Skip to main content

Advertisement

Log in

Targeting angiogenesis in pancreatic cancer: rationale and pitfalls

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer responsible for over 20% of deaths due to gastrointestinal malignancies. PDAC is usually diagnosed at an advanced stage which, in part, helps to explain its high resistance to chemotherapy and radiotherapy. In addition, the cancer cells in PDAC have a high propensity to metastasize and to aberrantly express several key regulators of angiogenesis and invasion. Chemotherapy has only provided a modest impact on mean survival and often induces side effects. Targeting angiogenesis alone or in combination with other modalities should be investigated to determine if it may provide for increased survival.

Materials and methods

This review summarizes the alterations in PDAC that play a critical role in angiogenesis and provides an overview of current and therapeutic strategies that may be useful for targeting angiogenesis in this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  2. Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H, Buchler MW (2004) Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 91:586–594

    PubMed  CAS  Google Scholar 

  3. Korc M (2007) Pancreatic cancer-associated stroma production. Am J Surg 194:S84–S86

    PubMed  CAS  Google Scholar 

  4. Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Lohr JM, Friess H (2007) Pancreatic cancer microenvironment. Int J Cancer 121:699–705

    PubMed  CAS  Google Scholar 

  5. Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2:897–909

    PubMed  CAS  Google Scholar 

  6. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249

    PubMed  CAS  Google Scholar 

  7. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    PubMed  CAS  Google Scholar 

  8. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856

    PubMed  CAS  Google Scholar 

  9. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846–851

    PubMed  CAS  Google Scholar 

  10. Zeng G, Germinaro M, Micsenyi A, Monga NK, Bell A, Sood A, Malhotra V, Sood N, Midda V, Monga DK, Kokkinakis DM, Monga SP (2006) Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia 8:279–289

    PubMed  CAS  Google Scholar 

  11. Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M (2007) Common activation of canonical wnt signaling in pancreatic adenocarcinoma. PLoS ONE 2:e1155

    PubMed  Google Scholar 

  12. Hu WG, Liu T, Xiong JX, Wang CY (2007) Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells. Acta Pharmacol Sin 28:1224–1230

    PubMed  CAS  Google Scholar 

  13. Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y, Wright CV, Hebrok M, Lewis BC (2007) Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A 104:5103–5108

    PubMed  CAS  Google Scholar 

  14. Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH (2006) Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 66:2778–2784

    PubMed  CAS  Google Scholar 

  15. Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH (2006) Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 5:483–493

    PubMed  CAS  Google Scholar 

  16. Welsch T, Kleeff J, Friess H (2007) Molecular pathogenesis of pancreatic cancer: advances and challenges. Curr Mol Med 7:504–521

    PubMed  CAS  Google Scholar 

  17. Bachem MG, Schunemann M, Ramadani M et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128:907–921

    PubMed  CAS  Google Scholar 

  18. Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD, Korc M (1998) The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 102:1662–1673

    PubMed  CAS  Google Scholar 

  19. Korc M (2003) Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer 2:8

    PubMed  CAS  Google Scholar 

  20. Garcea G, Lloyd TD, Gescher A, Dennison AR, Steward WP, Berry DP (2004) Angiogenesis of gastrointestinal tumours and their metastases—a target for intervention? Eur J Cancer 40:1302–1313

    PubMed  CAS  Google Scholar 

  21. Reinmuth N, Parkh A, Ahamad S, Liu W, Stoeltzing O, Fan F et al (2003) Biology of angiogenesis in tumours of the gastrointestinal tract. Microsc Res Tech 60:199–207

    PubMed  CAS  Google Scholar 

  22. John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7:14–23

    Article  PubMed  CAS  Google Scholar 

  23. Curran S, Murray GI (2000) Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36:1621–1630

    PubMed  CAS  Google Scholar 

  24. Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88

    PubMed  CAS  Google Scholar 

  25. Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700

    PubMed  CAS  Google Scholar 

  26. Caine GJ, Blann AD, Stonelake PS, Ryan P, Lip GY (2003) Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Invest 33:883–890

    PubMed  CAS  Google Scholar 

  27. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci Signal Transduct Knowl Environ 2007(407):cm8

    Google Scholar 

  28. Couvelard A, O’Toole D, Leek R, Turley H, Sauvanet A, Degott C, Ruszniewski P, Belghiti J, Harris AL, Gatter K, Pezzella F (2005) Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology 46:668–676

    PubMed  CAS  Google Scholar 

  29. Detwiller KY, Fernando NT, Segal NH, Ryeom SW, D’Amore PA, Yoon SS (2005) Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on RNA interference of vascular endothelial cell growth factor A. Cancer Res 65:5881–5889

    PubMed  CAS  Google Scholar 

  30. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    PubMed  CAS  Google Scholar 

  31. Couvelard A, O’Toole D, Turley H, Leek R, Sauvanet A, Degott C, Ruszniewski P, Belghiti J, Harris AL, Gatter K, Pezzella F (2005) Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression. Br J Cancer 92:94–101

    PubMed  CAS  Google Scholar 

  32. Wenger RH, Grassman M (1997) Oxygen and the hypoxia-inducible factor 1. Biol Chem 378:609–616

    PubMed  CAS  Google Scholar 

  33. Buchler P, Reber HA, Buchler M, Shrinkante S, Buchler MW, Firess H et al (2003) Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in pancreatic cancer. Pancreas 26:56–64

    PubMed  CAS  Google Scholar 

  34. Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang GL, Chen J et al (2001) Constitutive expression of hypoxia-inducible factor-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 61:6548–6554

    PubMed  CAS  Google Scholar 

  35. Gaspar NJ, Li L, Kapoun AM, Medicherla S, Reddy M, Li G, O’Young G, Quon D, Henson M, Damm DL, Muiru GT, Murphy A, Higgins LS, Chakravarty S, Wong DH (2007) Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol 72:152–161

    PubMed  CAS  Google Scholar 

  36. Takahashi Y, Bucana CD, Akagi Y, Liu W, Cleary KR, Mai M et al (1998) Significance of platelet-derived endothelial cell growth factor in the angiogenesis of human gastric cancer. Clin Cancer Res 4:429–434

    PubMed  CAS  Google Scholar 

  37. Boyer Arnold N, Korc M (2005) Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. J Biol Chem 280:21858–21866

    PubMed  CAS  Google Scholar 

  38. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    PubMed  CAS  Google Scholar 

  39. Ozawa F, Friess H, Tempia-Caliera A, Kleeff J, Buchler MW (2001) Growth factors and their receptors in pancreatic cancer. Teratog Carcinog Mutagen 21:27–44

    PubMed  CAS  Google Scholar 

  40. Zhu HJ, Burgess AW (2001) Regulation of transforming growth factor-beta signaling. Mol Cell Biol Res Commun 4:321–330

    PubMed  CAS  Google Scholar 

  41. Jia Z, Zhang J, Wei D, Wang L, Yuan P, Le X, Li Q, Yao J, Xie K (2007) Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res 67:4878–4885

    PubMed  CAS  Google Scholar 

  42. Seo Y, Baba H, Fukuda T, Takashima M, Sugimachi K (2000) High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer Biol Ther 88:2239–2245

    CAS  Google Scholar 

  43. Niedergethmann M, Hildenbrand R, Wostbrock B, Hartel M, Sturm JW, Richter A et al (2002) High expression of vascular endothelial growth factor predicts early recurrence and poor prognosis after curative resection for ductal adenocarcinoma of the pancreas. Pancreas 25:122–129

    PubMed  Google Scholar 

  44. Xie K, Wei D, Huang S (2006) Transcriptional anti-angiogenesis therapy of human pancreatic cancer. Cytokine Growth Factor Rev 17:147–156

    PubMed  CAS  Google Scholar 

  45. Nor JE, Christensen J, Mooney DJ, Polverini PJ (1999) Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 154:375–384

    PubMed  CAS  Google Scholar 

  46. Ku DD, Zaleski JK, Liu S, Brock TA (1993) Vascular endothelial growth factor (VEGF) induces EDRF-dependent relaxation in coronary arteries. Am J Pathol 265:H586–H592

    CAS  Google Scholar 

  47. Bach F, Uddin FJ, Burke D (2007) Angiopoietins in malignancy. Eur J Surg Oncol 33:7–15

    PubMed  CAS  Google Scholar 

  48. Fukasawa M, Korc M (2004) Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 10:3327–3332

    PubMed  CAS  Google Scholar 

  49. Hirokawa Y, Levitzki A, Lessene G, Baell J, Xiao C, Zhu H, Maruta H (2006) Signal therapy of human pancreatic cancer and NF1-deficient breast cancer xenograft in mice by a combination of PP1 and GL-2003, anti-PAK1 drugs (Tyr-kinase inhibitors). Cancer Lett 245(1–2):242–251

    PubMed  Google Scholar 

  50. Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274:10816–10822

    PubMed  CAS  Google Scholar 

  51. Blancher C, Moore JW, Robertson N, Harris AL (2001) Effects of ras and von Hippel–Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3″-kinase/Akt signaling pathway. Cancer Res 61:7349–7355

    PubMed  CAS  Google Scholar 

  52. Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276:49289–49298

    PubMed  CAS  Google Scholar 

  53. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS (1998) Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci U S A 95:3609–3614

    PubMed  CAS  Google Scholar 

  54. Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A (2003) Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 278:16045–16053

    PubMed  CAS  Google Scholar 

  55. Noda M, Hattori T, Kimura H, Naitoh H, Kodama T, Kashima K et al (1997) Expression of fibroblast growth factor 2 mRNA in early and advanced gastric cancer. Acta Oncol 36:695–700

    PubMed  CAS  Google Scholar 

  56. Ueki T, Koji T, Tamiya S, Nakane PK, Tsuneyoshi M (1995) Expression of basic fibroblast growth factor and fibroblast growth factor receptor in advanced gastric carcinoma. J Pathol 177:353–361

    PubMed  CAS  Google Scholar 

  57. Sperinde GV, Nugent MA (1998) Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry 37:13153–13164

    PubMed  CAS  Google Scholar 

  58. Sperinde GV, Nugent MA (2000) Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans. Biochemistry 39:3788–3796

    PubMed  CAS  Google Scholar 

  59. Javerzat S, Auguste P, Bikfalvi A (2002) The role of fibroblast growth factors in vascular development. Trends Mol Med 8:483–489

    PubMed  CAS  Google Scholar 

  60. Feurino LW, Zhang Y, Bharadwaj U, Zhang R, Li F, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M (2007) IL-6 Stimulates Th2 Type Cytokine Secretion and Upregulates VEGF and NRP-1 Expression in Pancreatic Cancer Cells. Cancer Biol Ther 6(7):1096–1100

    Article  CAS  PubMed  Google Scholar 

  61. Hedin KE (2002) Chemokines: new, key players in the pathobiology of pancreatic cancer. Int J Gastrointest Cancer 31:23–29

    PubMed  CAS  Google Scholar 

  62. Wente MN, Keane MP, Burdick MD, Friess H, Buchler MW, Ceyhan GO, Reber HA, Strieter RM, Hines OJ (2006) Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 241:221–227

    PubMed  CAS  Google Scholar 

  63. Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K (1999) Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 5:3711–3721

    PubMed  CAS  Google Scholar 

  64. kitadai Y, Takahashi Y, Haruma K, Naka K, Sumii K, Yokozaki H et al (1998) Transfection of interlukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cell s in nude mice. Br J Cancer 81:647–653

    Google Scholar 

  65. Xie K, Wei D, Shi Q, Huang S (2004) Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev 15:297–324

    PubMed  CAS  Google Scholar 

  66. Chen RL, Lander AD (2001) Mechanisms underlying preferential assembly of heparan sulfate on glypican-1. J Biol Chem 276:7507–7517

    PubMed  CAS  Google Scholar 

  67. Kleeff J, Wildi S, Kumbasar A, Friess H, Lander AD, Korc M (1999) Stable transfection of a glypican-1 antisense construct decreases tumorigenicity in PANC-1 pancreatic carcinoma cells. Pancreas 19:281–288

    PubMed  CAS  Google Scholar 

  68. Ding K, Lopez-Burks M, Sanchez-Duran JA, Korc M, Lander AD (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol 171:729–738

    PubMed  CAS  Google Scholar 

  69. Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD, Korc M (2008) Glypican-1 modulates the angiogenic and metastatic potential of cancer cells. J Clin Invest 118:89–99

    PubMed  CAS  Google Scholar 

  70. Fuster MM, Wang L, Castagnola J, Sikora L, Reddi K, Lee PH, Radek KA, Schuksz M, Bishop JR, Gallo RL, Sriramarao P, Esko JD (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177:539–549

    PubMed  CAS  Google Scholar 

  71. Niedzwiecki S, Stepien T, Kopec K, Kuzdak K, Komorowski J, Krupinski R, Stepien H (2006) Angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2) and Tie-2 (a receptor tyrosine kinase) concentrations in peripheral blood of patients with thyroid cancers. Cytokine 36:291–295

    PubMed  CAS  Google Scholar 

  72. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240

    PubMed  CAS  Google Scholar 

  73. Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10

    PubMed  CAS  Google Scholar 

  74. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    PubMed  CAS  Google Scholar 

  75. Maa M, Leu T, McCarley DJ, Schatzman RC, Parsons SJ (1995) Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci 92:6981–6985

    PubMed  CAS  Google Scholar 

  76. Summy JM, Trevino JG, Baker CH, Gallick GE (2005) c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas 31:263–274

    PubMed  CAS  Google Scholar 

  77. Yezhelyev MV, Koehl G, Guba M, Brabletz T, Jauch KW, Ryan A, Barge A, Green T, Fennell M, Bruns CJ (2004) Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 10:8028–8036

    PubMed  CAS  Google Scholar 

  78. Ischenko I, Guba M, Yezhelyev M, Papyan A, Schmid G, Green T, Fennell M, Jauch KW, Bruns CJ (2007) Effect of Src kinase inhibition on metastasis and tumor angiogenesis in human pancreatic cancer. Angiogenesis 10:167–182

    PubMed  CAS  Google Scholar 

  79. Mukhadopathyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-src activation. Nature 375:577–581

    Google Scholar 

  80. Coppola D (2000) Molecular prognostic markers in pancreatic cancer. Cancer Control 7:421–427

    PubMed  CAS  Google Scholar 

  81. Yang Y, Macleod V, Bendre M, Huang Y, Theus AM, Miao HQ, Kussie P, Yaccoby S, Epstein J, Suva LJ, Kelly T, Sanderson RD (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309

    PubMed  CAS  Google Scholar 

  82. Curran S, Dundas SR, Buxton J, Leeman MF, Ramsay R, Murray GI (2004) Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin Cancer Res 10:8229–8234

    PubMed  CAS  Google Scholar 

  83. Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N (2006) Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 66:1455–1463

    PubMed  CAS  Google Scholar 

  84. Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW (2001) Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res 61:4655–4659

    PubMed  CAS  Google Scholar 

  85. Das SK, Vasudevan DM (2007) Essential factors associated with hepatic angiogenesis. Life Sci 81:1555–1564

    PubMed  CAS  Google Scholar 

  86. Indraccolo S, Gola E, Rosato A, Minuzzo S, Habeler W, Tisato V, Roni V, Esposito G, Morini M, Albini A, Noonan DM, Ferrantini M, Amadori A, Chieco-Bianchi L (2002) Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells. Gene Ther 9:867–878

    PubMed  CAS  Google Scholar 

  87. Puduvalli VK, Sawaya R (2000) Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neurooncol 50:189–200

    PubMed  CAS  Google Scholar 

  88. Kleespies A, Jauch KW, Bruns CJ (2006) Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer? Drug Resist Updat 9:1–18

    PubMed  CAS  Google Scholar 

  89. Heinemann V, Wilke H, Mergenthaler HG, Clemens M, Konig H, Illiger HJ, Arning M, Schalhorn A, Possinger K, Fink U (2000) Gemcitabine and cisplatin in the treatment of advanced or metastatic pancreatic cancer. Ann Oncol 11:1399–1403

    PubMed  CAS  Google Scholar 

  90. Cha ST, Talavera D, Demir E, Nath AK, Sierra-Honigmann MR (2005) A method of isolation and culture of microvascular endothelial cells from mouse skin. Microvasc Res 70:198–204

    PubMed  CAS  Google Scholar 

  91. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, Ullrich A, Hirth KP, McMahon G (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59:99–106

    PubMed  CAS  Google Scholar 

  92. Glade-Bender J, Kandel JJ, Yamashiro DJ (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276

    PubMed  CAS  Google Scholar 

  93. Davis DW, Takamori R, Raut CP, Xiong HQ, Herbst RS, Stadler WM, Heymach JV, Demetri GD, Rashid A, Shen Y, Wen S, Abbruzzese JL, McConkey DJ (2005) Pharmacodynamic analysis of target inhibition and endothelial cell death in tumors treated with the vascular endothelial growth factor receptor antagonists SU5416 or SU6668. Clin Cancer Res 11:678–689

    PubMed  CAS  Google Scholar 

  94. Buchler P, Reber HA, Buchler MW, Friess H, Hines OJ (2002) VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg 236:738–49 discussion 749

    PubMed  Google Scholar 

  95. Buchler P, Reber HA, Roth MM, Shiroishi M, Friess H, Hines OJ (2007) Target therapy using a small molecule inhibitor against angiogenic receptors in pancreatic cancer. Neoplasia 9:119–127

    PubMed  CAS  Google Scholar 

  96. Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41:107–127

    CAS  Google Scholar 

  97. Cabebe E, Fisher GA (2007) Clinical trials of VEGF receptor tyrosine kinase inhibitors in pancreatic cancer. Expert Opin Investig Drugs 16:467–476

    PubMed  CAS  Google Scholar 

  98. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    PubMed  CAS  Google Scholar 

  99. Ma WW, Hidalgo M (2007) Exploiting novel molecular targets in gastrointestinal cancers. World J Gastroenterol 13:5845–5856

    PubMed  CAS  Google Scholar 

  100. El-Rayes BF, Ali S, Ali IF, Philip PA, Abbruzzese J, Sarkar FH (2006) Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-kappaB. Cancer Res 66:10553–10559

    PubMed  CAS  Google Scholar 

  101. Buchler P, Reber HA, Buchler MW, Friess H, Lavey RS, Hines OJ (2004) Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer 100:201–210

    PubMed  CAS  Google Scholar 

  102. Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942

    PubMed  CAS  Google Scholar 

  103. Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, Philip PA, Abbruzzese J, Sarkar FH (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65:9064–9072

    PubMed  CAS  Google Scholar 

  104. Sakla MS, Shenouda NS, Ansell PJ, Macdonald RS, Lubahn DB (2007) Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells. Endocrine 32:69–78

    PubMed  CAS  Google Scholar 

  105. Singh AJ, Meyer RD, Navruzbekov G, Shelke R, Duan L, Band H, Leeman SE, Rahimi N (2007) A critical role for the E3-ligase activity of c-Cbl in VEGFR-2-mediated PLCgamma1 activation and angiogenesis. Proc Natl Acad Sci U S A 104:5413–5418

    PubMed  CAS  Google Scholar 

  106. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    PubMed  CAS  Google Scholar 

  107. Shojaei F, Ferrara N (2007) Antiangiogenic therapy for cancer: an update. Cancer J 13:345–348

    PubMed  CAS  Google Scholar 

  108. Kurahara H, Takao S, Maemura K, Shinchi H, Natsugoe S, Aikou T (2004) Impact of vascular endothelial growth factor-C and -D expression in human pancreatic cancer: its relationship to lymph node metastasis. Clin Cancer Res 10:8413–8420

    PubMed  CAS  Google Scholar 

  109. Tang RF, Itakura J, Aikawa T, Matsuda K, Fujii H, Korc M, Matsumoto Y (2001) Overexpression of lymphangiogenic growth factor VEGF-C in human pancreatic cancer. Pancreas 22:285–292

    PubMed  CAS  Google Scholar 

  110. Tang RF, Wang SX, Peng L, Zhang M, Li ZF, Zhang ZM, Xiao Y, Zhang FR (2006) Expression of vascular endothelial growth factors A and C in human pancreatic cancer. World J Gastroenterol 12:280–286

    PubMed  Google Scholar 

  111. Fukahi K, Fukasawa M, Neufeld G, Itakura J, Korc M (2004) Aberrant expression of neuropilin-1 and -2 in human pancreatic cancer cells. Clin Cancer Res 10:581–590

    PubMed  CAS  Google Scholar 

  112. Cohen T, Herzog Y, Brodzky A, Greenson JK, Eldar S, Gluzman-Poltorak Z, Neufeld G, Resnick MB (2002) Neuropilin-2 is a novel marker expressed in pancreatic islet cells and endocrine pancreatic tumours. J Pathol 198:77–82

    PubMed  CAS  Google Scholar 

  113. Couvelard A, Hu J, Steers G, O’Toole D, Sauvanet A, Belghiti J, Bedossa P, Gatter K, Ruszniewski P, Pezzella F (2006) Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology 131:1597–1610

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray Korc.

Additional information

This study was supported by grants from the National Cancer Institute (CA-101306 and CA-102687) awarded to MK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whipple, C., Korc, M. Targeting angiogenesis in pancreatic cancer: rationale and pitfalls. Langenbecks Arch Surg 393, 901–910 (2008). https://doi.org/10.1007/s00423-008-0280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-008-0280-z

Keywords

Navigation