Skip to main content
Log in

Reactive oxygen species in vascular biology: implications in hypertension

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS), including superoxide (·O2), hydrogen peroxide (H2O2), and hydroxyl anion (OH-), and reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO), are biologically important O2 derivatives that are increasingly recognized to be important in vascular biology through their oxidation/reduction (redox) potential. All vascular cell types (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) produce ROS, primarily via cell membrane-associated NAD(P)H oxidase. Reactive oxygen species regulate vascular function by modulating cell growth, apoptosis/anoikis, migration, inflammation, secretion, and extracellular matrix protein production. An imbalance in redox state where pro-oxidants overwhelm anti-oxidant capacity results in oxidative stress. Oxidative stress and associated oxidative damage are mediators of vascular injury and inflammation in many cardiovascular diseases, including hypertension, hyperlipidemia, and diabetes. Increased generation of ROS has been demonstrated in experimental and human hypertension. Anti-oxidants and agents that interrupt NAD(P)H oxidase-driven ·O2 production regress vascular remodeling, improve endothelial function, reduce inflammation, and decrease blood pressure in hypertensive models. This experimental evidence has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates, by decreasing generation of ROS and/or by increasing availability of antioxidants, may be useful in minimizing vascular injury and hypertensive end organ damage. The present chapter focuses on the importance of ROS in vascular biology and discusses the role of oxidative stress in vascular damage in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109:227–233

    CAS  PubMed  Google Scholar 

  • Alexander RW (1995) Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 25:155–161

    CAS  PubMed  Google Scholar 

  • Azumimi H, Inoue N, Takeshita S (1999) Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 100:1494–1498

    PubMed  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    Article  CAS  PubMed  Google Scholar 

  • Bagi Z, Koller A (2003) Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. J Vasc Res 40:47–57

    CAS  PubMed  Google Scholar 

  • Banfi B, Clark RA, Steger K, Krause K-H (2003) Two novel proteins activate superoxide generation by the NADPH oxidase Nox1. J Biol Chem 278:3510–3513

    Article  CAS  PubMed  Google Scholar 

  • Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296

    CAS  PubMed  Google Scholar 

  • Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR (2003) Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 30:849–854

    CAS  PubMed  Google Scholar 

  • Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, Dominiczak AF (2000) Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101:2206–2212

    CAS  PubMed  Google Scholar 

  • Boshtam M, Rafiei M, Sadeghi K, Sarraf-Zadegan N (2002) Vitamin E can reduce blood pressure in mild hypertensives. Int J Vitam Nutr Res 72:309–314

    CAS  PubMed  Google Scholar 

  • Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R (2002) The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med 32:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Banning A, Kny M, Bol GF (2004) Redox events in interleukin-1 signaling. Arch Biochem Biophys 423:66–73

    Article  CAS  PubMed  Google Scholar 

  • Brown AA, Hu FB (2001) Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr. 73:673–686

    Google Scholar 

  • Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478

    Article  CAS  PubMed  Google Scholar 

  • Cantor EJ, Mancini EV, Seth R, Yao XH, Netticadan T (2003) Oxidative stress and heart disease: cardiac dysfunction, nutrition, and gene therapy. Curr Hypertens Rep 5:215–220

    PubMed  Google Scholar 

  • Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT, Fujita T, Welch WJ, Wilcox CS (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39:269–274

    Article  CAS  PubMed  Google Scholar 

  • Channon KM, Guzik TJ (2002) Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol 53:515–524

    CAS  PubMed  Google Scholar 

  • Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, et al (1999) Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomized trial. Lancet 354:810–815

    CAS  PubMed  Google Scholar 

  • Chen X, Touyz RM, Park JB, Schiffrin EL (2001) Antioxidant effects of vitamins C and E are associated with altered activation of vascular NAD(P)H oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38:606–611

    CAS  PubMed  Google Scholar 

  • Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140

    Article  CAS  PubMed  Google Scholar 

  • Chiarugi P, Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28:509–514

    Article  CAS  PubMed  Google Scholar 

  • Cosentino F, Sill JC, Katusic ZS (1994) Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 23:229–235

    CAS  PubMed  Google Scholar 

  • Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Luscher TF (2001) Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 21:496–502

    CAS  PubMed  Google Scholar 

  • Cracowski JL, Baguet JP, Ormezzano O, Bessard J, Stanke-Labesque F, Bessard G, Mallion JM (2003) Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 41:286–288

    Article  CAS  PubMed  Google Scholar 

  • Dandona P, Karne R, Ghanim H, Hamouda W, Aljada A, Magsino CH (2000) Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 101:122–124

    CAS  PubMed  Google Scholar 

  • Dantas AP, Franco Mdo C, Silva-Antonialli MM, Tostes RC, Fortes ZB, Nigro D, Carvalho MH (2004) Gender differences in superoxide generation in microvessels of hypertensive rats: role of NAD(P)H-oxidase. Cardiovasc Res 61:22–29

    Article  CAS  PubMed  Google Scholar 

  • Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals, a question of balance. FEBS Lett 369:13–15

    Article  PubMed  Google Scholar 

  • De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK (1998) Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 329:653–657

    PubMed  Google Scholar 

  • De Leo FR, Ulman KV, Davis AR,Jutila KL, Quinn MT (1996) Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 271:17013–17020

    Article  PubMed  Google Scholar 

  • Deshpande NN, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling KK (2002) Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal 4:845–854

    Article  CAS  PubMed  Google Scholar 

  • Dhalla SN, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  • Diep QN, Amiri F, Touyz RM, Cohn JS, Endemann D, Neves MF, Schiffrin EL (2002) PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40:866–871

    Article  CAS  PubMed  Google Scholar 

  • Diez J, Laviades C, Orbe J, Zalba G, Lopez B, Gonzalez A, Mayor G, Paramo JA, Beloqui O (2003) The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives. J Hypertens 21:2085–2092

    CAS  PubMed  Google Scholar 

  • Digiesi D, Lenuzza M, Digiese G (2001) Prospects for the use of antioxidant therapy in hypertension. Ann Ital Med Int 16:93–100

    CAS  PubMed  Google Scholar 

  • Ding Y, Gonick HC, Vaziri ND, Liang K, Wei L (2001) Lead-induced hypertension. III. Increased hydroxyl radical production. Am J Hypertens 14:169–173

    Article  CAS  PubMed  Google Scholar 

  • Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL (2001) Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 37:554–560

    CAS  PubMed  Google Scholar 

  • Droge W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Google Scholar 

  • Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H (2000) Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269:713–717

    Article  CAS  PubMed  Google Scholar 

  • Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JF, Vita JA (1999) Treatment of hypertension with ascorbic acid. Lancet 354:2048–2049

    Article  CAS  PubMed  Google Scholar 

  • Ermak G, Davies KJA (2001) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  Google Scholar 

  • Fortepiani LA, Zhang H, Racusen L, Roberts LJ II, Reckelhoff JF (2003) Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension 41:640–645

    Article  CAS  PubMed  Google Scholar 

  • Fotheby MD, Williams JC, Forster LA, Craner P, Ferns GA (2000) Effect of vitamin C on ambulatory blood pressure and plasma lipids in older patients. J Hypertens 18:411–415

    Article  PubMed  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    CAS  PubMed  Google Scholar 

  • Frenoux JM, Noirot B, Prost ED, Madani S, Blond JP, Belleville JL, Prost JL (2002) Very high alpha-tocopherol diet diminishes oxidative stress and hypercoagulation in hypertensive rats but not in normotensive rats. Med Sci Monit 8:BR401–BR407

    Google Scholar 

  • Fridovich I (1997) Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  • Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR (1997) Combination oral antioxidant supplementation reduces blood pressure. Clin Sci (Lond) 92:361–365

    Google Scholar 

  • Gao YJ, Lee RM (2001) Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production. Br J Pharmacol 134:1639–1646

    CAS  PubMed  Google Scholar 

  • Gauss KA, Mascolo PL, Siemsen DW, Nelson LK, Bunger PL, Pagano PJ, Quinn MT (2002) Cloning and sequencing of rabbit leukocyte NADPH oxidase genes reveals a unique p67(phox) homolog. J Leukoc Biol 71:319–328

    CAS  PubMed  Google Scholar 

  • Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S, Salvetti A (2003) Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 41:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R (2001) Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ Res 89:47–54

    CAS  PubMed  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000a) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000b) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  • Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92:e80–e86

    Article  CAS  PubMed  Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1562

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272

    CAS  PubMed  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997:2153–2157

    Google Scholar 

  • Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, Chayama K (2002a) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15:326–332

    Article  CAS  PubMed  Google Scholar 

  • Higashi Y, Sasaki S, Nakagawa K, et al (2002b) Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 346:1954–1962

    Article  CAS  PubMed  Google Scholar 

  • Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1–8

    Article  Google Scholar 

  • Hoagland KM, Maier KG, Roman RJ (2003) Contributions of 20-HETE to the antihypertensive effects of Tempol in Dahl salt-sensitive rats. Hypertension 41:697–702

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ, Hsiao G, Cheng TH, Yen MH (2001) Supplementation with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension 38:1044–1048

    CAS  PubMed  Google Scholar 

  • HOPE Investigators (2000) Vitamin E supplementation and cardiovascular events in high risk patients. N Engl J Med 342:154–160

    Article  PubMed  Google Scholar 

  • Jones A, O’Donnell VB, Wood JD (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol H1626–H1634

  • Kamata H, Shibukawa Y, Oka S-I, Hirata H (2000) Epidermal growth factor receptor is modulated by redox through multiple mechanisms. Effects of reductants and H2O2. Eur J Biochem 267:1933–1944

    Article  CAS  PubMed  Google Scholar 

  • Kerr S, Brosnan J, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension. Role of endothelium. Hypertension 33:1353–1358

    CAS  PubMed  Google Scholar 

  • Khaw K-T, Bingham S, Welch A, Luben R, Wareham N, Oakes S, et al (2001) Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. Lancet 357:657–663

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Sasaki S, Sasazuki S, Okubo S, Hayashi M, Tsugane S (2002) Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension 40:797–803

    Article  CAS  PubMed  Google Scholar 

  • Kristal B, Shurta-Swirrski R, Chezar J (1998) Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens 11:921–928

    Article  CAS  PubMed  Google Scholar 

  • Lacy F, Kailasam MT, O’Connor DT, Schmid-Schonbein GW, Parmer RJ (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36:878–884

    CAS  PubMed  Google Scholar 

  • Landmesser U, Harrison DG (2001) Oxidative stress and vascular damage in hypertension. Coron Artery Dis 12:455–461

    Article  CAS  PubMed  Google Scholar 

  • Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    Article  CAS  PubMed  Google Scholar 

  • Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    PubMed  Google Scholar 

  • Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894

    CAS  PubMed  Google Scholar 

  • Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588–593

    CAS  PubMed  Google Scholar 

  • Lee K, Esselman WJ (2002) Inhibition of PTPS by H2O2 regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273:15366–15372

    Article  CAS  PubMed  Google Scholar 

  • Lee SL, Wang WW, Finlay GA, Fanburg BL (1999) Serotonin stimulates MAP kinase activity through the formation of superoxide anion. Am J Physiol Lung Cell Mol Physiol 277:L282–L291

    CAS  Google Scholar 

  • Lee VM, Quinn PA, Jennings SC, Ng LL (2003) Neutrophil activation and production of reactive oxygen species in pre-eclampsia. J Hypertens 21:395–402

    Article  CAS  PubMed  Google Scholar 

  • Leusen JHW, Verhoeven AJ, Roos D (1996) Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci 1:72–90

    Google Scholar 

  • Li JM, Shah AM (2002) Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 277:19952–19960

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Shah AM (2003) Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 278:12094–12100

    Google Scholar 

  • Li AE, Ito H, Rovira II, Kim KS, Takeda K, Yu ZY, Ferrans VJ, Finkel T (1999) A role for reactive oxygen species in endothelial cell anoikis. Circ Res 85:304–310

    CAS  PubMed  Google Scholar 

  • Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, Chen AF (2003a) Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 107:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li W, Su J, Liu W, Altura BT, Altura BM (2003b) Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes. Brain Res Bull 62:101–106

    Article  CAS  PubMed  Google Scholar 

  • Lip GY, Edmunds E, Nuttall SL, Landray MJ, Blann AD, Beevers DG (2002) Oxidative stress in malignant and non-malignant phase hypertension. J Hum Hypertens 16:333–336

    Article  CAS  PubMed  Google Scholar 

  • List BM, Klosch B, Volker C, Gorren AC, Sessa WC, Werner ER, Kukovetz WR, Schmidt K, Mayer B (1997) Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J 323:159–165

    CAS  PubMed  Google Scholar 

  • Lopes LR, Dagher MC, Gutierrez A, Young B, Bouin A-P, Fuchs A, Babior BM (2004) Phosphorylated p40phox as a negative regulator of NADPH oxidase. Biochemistry 43:3723–3730

    Article  CAS  PubMed  Google Scholar 

  • Lounsbury KM, Hu Q, Ziegelstein RC (2000) Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 28:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Luft FC (2001) Mechanisms and cardiovascular damage in hypertension. Hypertension 37:594–598

    CAS  PubMed  Google Scholar 

  • Manning RD Jr, Meng S, Tian N (2003) Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 179:243–250

    Article  CAS  PubMed  Google Scholar 

  • Mantle D, Patel VB, Why HJ, Ahmed S, Rahman I, MacNee W, Wassif WS, Richardson PJ, Preedy VR (2000) Effects of lisinopril and amlodipine on antioxidant status in experimental hypertension. Clin Chim Acta 299:1–10

    Article  CAS  PubMed  Google Scholar 

  • Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R (1997) Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96:2361–2367

    CAS  PubMed  Google Scholar 

  • Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399

    Article  CAS  PubMed  Google Scholar 

  • Milstien S, Katusic Z (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263:681–684

    Article  CAS  PubMed  Google Scholar 

  • Minuz P, Patrignani P, Gaino S, Degan M, Menapace L, Tommasoli R (2002) Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 106:2800–2805

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BM, Dorrance AM, Ergul A, Webb RC (2004) Sepiapterin decreases vasorelaxation in nitric oxide synthase inhibition-induced hypertension. J Cardiovasc Pharmacol 43:93–98

    Article  CAS  PubMed  Google Scholar 

  • Moreno MU, San Jose G, Orbe J, Paramo JA, Beloqui O, Diez J, Zalba G (2003) Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett 542:27–31

    Article  CAS  PubMed  Google Scholar 

  • Mullan B, Young IS, Fee H, McCance DR (2002) Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 40:804–809

    Article  CAS  PubMed  Google Scholar 

  • Muller DN, Dechend R, Mervaala EMA, Park JK, Schmidt F, Fiebeler, et al (2000) NFκB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35:193–201

    CAS  PubMed  Google Scholar 

  • Muzaffar S, Jeremy JY, Angelini GD, Stuart-Smith K, Shukla N (2003) Role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries. Thorax 58:598–604

    Article  CAS  PubMed  Google Scholar 

  • Nickenig G, Strehlow K, Baumer AT, Baudler S, Wassmann S, Sauer H, Bohm M (2000) Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression. Br J Pharmacol 131:795–803

    CAS  PubMed  Google Scholar 

  • Ohtahara A, Hisatome I, Yamamoto Y, Furuse M, Sonoyama K, Furuse Y (2001) The release of the substrate for xanthine oxidase in hypertensive patients was suppressed by angiotensin converting enzyme inhibitors and α1-blockers. J Hypertens 19:575–582

    Article  CAS  PubMed  Google Scholar 

  • Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84

    Article  CAS  PubMed  Google Scholar 

  • Podjarny E, Benchetrit S, Rathaus M, Pomeranz A, Rashid G, Shapira J, Bernheim J (2003) Effect of tetrahydrobiopterin on blood pressure in rats after subtotal nephrectomy. Nephron Physiol 94:6–9

    Article  Google Scholar 

  • Prabha PS, Das UN, Koratkar R, Sagar PS, Ramesh G (1990) Free radical generation, lipid peroxidation and essential fatty acids in uncontrolled essential hypertension. Prostaglandins Leukot Essent Fatty Acids 41:27–33

    Article  CAS  PubMed  Google Scholar 

  • Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J (2003) AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 42:206–212

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T (1996a) Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    CAS  Google Scholar 

  • Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996b) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 98:2572–2579

    CAS  PubMed  Google Scholar 

  • Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70:593–599

    CAS  PubMed  Google Scholar 

  • Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Rey FE, Pagano PJ (2002) The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 22:1962–1971

    Article  CAS  PubMed  Google Scholar 

  • Romero JC, Reckelhoff JF (1999) Role of angiotensin and oxidative stress in essential hypertension. Hypertension 34:943–949

    CAS  PubMed  Google Scholar 

  • Russo C, Olivieri O, Girelli D, Faccini G, Zenari ML, Lombardi S, Corrocher R (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Kallo IJ, Kaul N, Ganguly NK, Sharma BK (1992) Oxygen free radicals in essential hypertension. Mol Cell Biochem 111:103–108

    CAS  PubMed  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  CAS  PubMed  Google Scholar 

  • Schachinger V, Britten MB, Dimmeler S, Zeiher AM (2001) NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function. Eur Heart J 22:96–101

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schnackenberg CG, Welch W, Wilcox CS (1999) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 32:59–64

    Google Scholar 

  • Schuijt MP, Tom B, De Vries R, Saxena PR, Sluiter W, Van Kats JP, Danser AH (2003) Superoxide does not mediate the acute vasoconstrictor effects of angiotensin II: a study in human and porcine arteries. J Hypertens 21:2335–2344

    Article  CAS  PubMed  Google Scholar 

  • Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK (2002) Angiotensin II stimulation of NAD(P)H oxidase activity. Upstream mediators. Circ Res 91:406–413

    Article  CAS  PubMed  Google Scholar 

  • Sharma RC, Hodis HN, Mack WJ (1996) Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence. Am J Hypertens 9:577–590

    Article  CAS  PubMed  Google Scholar 

  • Somers MJ, Harrison DG (1999) Reactive oxygen species and the control of vasomotor tone. Curr Hypertens Rep 1:102–108

    CAS  PubMed  Google Scholar 

  • Sorescu D, Weiss D, Lassegue B, Clempus RE, Szocs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK (2002) Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Stojiljkovic MP, Lopes HF, Zhang D, Morrow JD, Goodfriend TL, Egan BM (2002) Increasing plasma fatty acids elevates F2-isoprostanes in humans: implications for the cardiovascular risk factor cluster. J Hypertens 20:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Stralin P, Karlsson K, Johannson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15:2032–2036

    CAS  PubMed  Google Scholar 

  • Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW (2002) The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 9:259–276

    Article  CAS  PubMed  Google Scholar 

  • Suh YA, Arnold RS, Lassegue B (1999) Cell transformation by the superoxide-generating Mox-1. Nature 410:79–82

    Google Scholar 

  • Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140:105–112

    Article  Google Scholar 

  • Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–2229

    CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Ghiadoni L, Magagna A, Pasini AF, Garbin U, et al (2001) Effect of calcium antagonist or beta blockade treatment on nitric oxide-dependent vasodilation and oxidative stress in essential hypertensive patients. J Hypertens 19:1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Tanito M, Nakamura H, Kwon YW, Teratani A, Masutani H, Shioji K, Kishimoto C, Ohira A, Horie R, Yodoi J (2004) Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 6:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T (2002) Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure. Hypertension 40:834–839

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas G, Boyano-Adanez MC, Medina J, Parra T, Griera M, Lopez-Ongil S, Arilla E, Rodriguez-Puyol M, Rodriguez-Puyol D (2001) The role of hydrogen peroxide in the contractile response to angiotensin II. Mol Pharmacol 9:104–112

    Google Scholar 

  • Torres M (2003) Mitogen-activated protein kinase pathway in redox signaling. Front Biosci 8:369–391

    Google Scholar 

  • Touyz RM (2000) Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2:98–105

    CAS  PubMed  Google Scholar 

  • Touyz RM (2003a) Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 12:165–174

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM (2003b) Activated oxygen metabolites: do they really play a role in angiotensin II-regulated vascular tone? J Hypertens 21:2235–2238

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (1999) Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34:976–982

    CAS  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (2001) Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 19:1245–1254

    Article  CAS  Google Scholar 

  • Touyz RM, Chen X, He G, Quinn MT, Schiffrin EL (2002a) Expression of a gp91phox-containing leukocyte-type NADPH oxidase in human vascular smooth muscle cells: modulation by Ang II. Circ Res 90:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Wu XH, He G, Salomon S, Schiffrin EL (2002b) Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 39:479–485

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Yao G, Schiffrin EL (2003a) c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:981–987

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL (2003b) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 81:159–167

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL (2004) Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens (in press)

  • Tschudi M, Mesaros S, Luscher TF, Malinski T (1996) Direct in situ measurement of nitric oxide in mesenteric resistance arteries: increased decomposition by superoxide in hypertension. Hypertension 27:32–35

    CAS  PubMed  Google Scholar 

  • Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry 67:281–292

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029

    Article  CAS  PubMed  Google Scholar 

  • Vasquez-Vivar J, Duquaine D, Whitsett J, Kalyanaraman B, Rajagopalan S (2002) Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants. Arterioscler Thromb Vasc Biol 22:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kubler W, Kreuzer J (2000) Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948

    CAS  PubMed  Google Scholar 

  • Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459

    Article  CAS  PubMed  Google Scholar 

  • Virdis A, Fritsch Neves M, Amiri F, Viel E, Touyz RM, Schiffrin EL (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40:504–510

    Article  CAS  PubMed  Google Scholar 

  • Virdis A, Iglarz M, Neves MF, Amiri F, Touyz RM, Rozen R, Schiffrin EL (2003) Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice. Arterioscler Thromb Vasc Biol 23:1352–1357

    Article  CAS  Google Scholar 

  • Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22:535–542

    Article  CAS  PubMed  Google Scholar 

  • Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023

    Article  CAS  PubMed  Google Scholar 

  • Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ, Mendonca M, Aslam S, Wilcox CS (2003) Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2 K,1C kidney. Hypertension 41:692–696

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypert Rep 4:160–166

    Google Scholar 

  • Wingler K, Wunsch S, Kreutz R, Rothermund L, Paul M, Schmidt HH (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic Biol Med 31:1456–1464

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Millette E, Wu L, de Champlain J (2001) Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. J Hypertens 19:741–748

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Lamontagne D, de Champlain J (2002) Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105:387–392

    Article  CAS  PubMed  Google Scholar 

  • Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki H, Haendeler J, Berk BC (2003) Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 93:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Hardaway M, Sun G, Ries WL, Key L Jr (2000) Superoxide generation and tyrosine kinase. Biochem Cell Biol 78:11–17

    Article  CAS  PubMed  Google Scholar 

  • Zafari AM, Ushio-Fukai M, Akers M, Griendling K (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32:488–495

    CAS  PubMed  Google Scholar 

  • Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Etayo JC, Diez J (2000) Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061

    CAS  PubMed  Google Scholar 

  • Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, Diez J (2001a) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38:1395–1399

    CAS  PubMed  Google Scholar 

  • Zalba G, San Jose G, Beaumont FJ, Fortuno MA, Fortuno A, Diez J (2001b) Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats. Circ Res 88:217–222

    CAS  PubMed  Google Scholar 

  • Zanzinger J (2002) Mechanisms of action of nitric oxide in the brain stem: role of oxidative stress. Auton Neurosci 98:24–27

    Article  CAS  PubMed  Google Scholar 

  • Zhan CD, Sindhu RK, Vaziri ND (2004) Up-regulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation. Kidney Int 65:219–227

    Article  CAS  PubMed  Google Scholar 

  • Zheng JS, Yang XQ, Lookingland KJ, et al (2003) Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 108:1238–1245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors was supported by grants 13570, 37917, 44018 and a Group grant to the Multidisciplinary Research Group on Hypertension, all from the Canadian Institutes of Health Research (previously called the Medical Research Council of Canada). R.M.T. received a scholarship from the Fonds de la recherche en santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Touyz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touyz, R.M., Schiffrin, E.L. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122, 339–352 (2004). https://doi.org/10.1007/s00418-004-0696-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0696-7

Keywords

Navigation