Skip to main content
Log in

Immunohistochemical investigation of dopaminergic terminal markers and caspase-3 activation in the striatum of human methamphetamine users

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) has been shown to induce neurotoxicity. In a previous human study using quantitative Western blotting and radioligand binding assay, dopaminergic terminal marker deficits were induced in chronic METH users. In this study, we examined the suitability of the immunohistochemical detection of tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter-2 (VMAT2) levels, and caspase-3 activation in the striatum to diagnose METH abuse. Decreases in TH immunoreactivity in the nucleus accumbens and DAT in the nucleus accumbens and putamen were induced in METH users, whereas a significant difference of VMAT2 was not evident between METH and control groups. However, in the nucleus accumbens of two METH users, levels of VMAT2, a stable marker of striatal dopaminergic terminal integrity, were reduced remarkably. These findings might indicate that dopaminergic terminal degeneration is induced in the striatum of some METH abusers. On the other hand, we observed little caspase-3 activation, indicative of apoptosis, in the striatal neurons of chronic METH users. Overall, the findings of dopaminergic terminal markers were similar to those in the previous human study. Therefore, it is suggested that immunohistochemical techniques could be used to examine dopaminergic terminal marker levels and could also give useful information on chronic and/or lethal METH use in cases of METH-related death, where METH intoxication may not be toxicologically demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson AJ, Su JH, Cotman CW (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area and effect of postmortem delay. J Neurosci 16:1710–1719

    PubMed  CAS  Google Scholar 

  2. Cadet JL, Brannock C (1998) Free radicals and the pathology of brain dopamine systems. Neurochem Int 32:117–131

    Article  PubMed  CAS  Google Scholar 

  3. Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788

    Article  PubMed  CAS  Google Scholar 

  4. Cappon GD, Pu C, Vorhees CV (2000) Time-course of methamphetamine-induced neurotoxicity in rat caudate–putamen after single dose treatment. Brain Res 863:106–111

    Article  PubMed  CAS  Google Scholar 

  5. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    Article  PubMed  CAS  Google Scholar 

  6. Deng X, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Brain Res Mol Brain Res 93:64–69

    Article  PubMed  CAS  Google Scholar 

  7. De Vito MJ, Wagner GC (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28:1145–1150

    Article  PubMed  Google Scholar 

  8. Dreßler J, Hanisch U, Busuttil A (2005) Comments on Hausmann et al.: neuronal apoptosis following human brain injury. Int J Legal Med 119:177–178

    Article  PubMed  Google Scholar 

  9. Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279

    Article  PubMed  CAS  Google Scholar 

  10. Gown AM, Willingham MC (2002) Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem 50:449–454

    PubMed  CAS  Google Scholar 

  11. Guilarte TR, Nihei MK, McGlothan JL, Howard AS (2003) Methamphetamine-induced deficits of monoaminergic neuronal markers: distal axotomy or neuronal plasticity. Neuroscience 122:499–513

    Article  PubMed  CAS  Google Scholar 

  12. Harvey DC, Lacan G, Tanious SP, Melega WP (2000) Recovery from methamphetamine-induced long-term nigrostriatal dopaminergic deficits without substantia nigra cell loss. Brain Res 871:259–270

    Article  PubMed  CAS  Google Scholar 

  13. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) Quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112:227–232

    Article  PubMed  CAS  Google Scholar 

  14. Hausmann R, Biermann T, Wiest I, Tübel J, Betz P (2004) Neuronal apoptosis following brain injury. Int J Legal Med 118:32–36

    Article  PubMed  CAS  Google Scholar 

  15. Hausmann R, Vogel C, Seidl S, Betz P (2006) Value of morphological parameters for grading of brain swelling. Int J Legal Med (in press). DOI 10.1007/s00414-005-0021-6

  16. Hogan KA, Staal RGW, Sonsalla PK (2000) Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicular preparations. J Neurochem 74:2217–2220

    Article  PubMed  CAS  Google Scholar 

  17. Jayanthi S, Deng X, Noailles P-AH, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondrial-dependent death cascades. FASEB J 18:238–251

    Article  PubMed  CAS  Google Scholar 

  18. Johnson-Davis KL, Fleckenstein AE, Wilkins DG (2003) The role of hyperthermia and metabolism as mechanisms of tolerance to methamphetamine neurotoxicity. Eur J Pharmacol 482:151–154

    Article  PubMed  CAS  Google Scholar 

  19. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D (2002) Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci 15:8951–8960

    Google Scholar 

  20. Matsuzaki H, Namikawa K, Kiyama H, Mori N, Sato K (2004) Brain-derived neurotrophic factor rescues neuronal death induced by methamphetamine. Biol Psychiatry 55:52–60

    Article  PubMed  CAS  Google Scholar 

  21. Meredith GE, Callen S, Scheuer DA (2002) Brain-derived neurotrophic factor expression in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949:218–227

    Article  PubMed  CAS  Google Scholar 

  22. Mirecki A, Fitzmaurice P, Ang L, Kalasinski KS, Peretti FJ, Aiken SS, Wickham DJ, Sherwin A, Nobrega JN, Forman HJ, Kish SJ (2004) Brain antioxidant systems in human methamphetamine users. J Neurochem 89:1396–1408

    Article  PubMed  CAS  Google Scholar 

  23. O’Callaghan JP, Miller B (1994) Neurotoxicity profiles of substituted amphetamine in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  CAS  Google Scholar 

  24. Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK (2003) Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 28:1730–1740

    Article  PubMed  CAS  Google Scholar 

  25. Vander Borght TM, Kilbourn MR, Desmond T, Kuhl D, Frey K (1995) The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 294:577–583

    Article  Google Scholar 

  26. Williams SM, Bryan-Lluka LJ, Pow DV (2005) Quantitative analysis of immunolabeling for serotonin and for glutamate transporter after administration of imipramine and citalopram. Brain Res 1042:224–232

    Article  PubMed  CAS  Google Scholar 

  27. Wilson JM, Kalasinski KS, Levey AI, Bergeron C, Reiber G, Anthony RT, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants-in-aid for General Scientific Research (17590579) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Kitamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, O., Tokunaga, I., Gotohda, T. et al. Immunohistochemical investigation of dopaminergic terminal markers and caspase-3 activation in the striatum of human methamphetamine users. Int J Legal Med 121, 163–168 (2007). https://doi.org/10.1007/s00414-006-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-006-0087-9

Keywords

Navigation