Skip to main content

Advertisement

Log in

Age-Dependent Progression in Lung Pathophysiology can be Prevented by Restoring Fatty Acid and Ceramide Imbalance in Cystic Fibrosis

  • CYSTIC FIBROSIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Cystic fibrosis (CF) is a progressive disease which causes a continuous decline in lung capacity with age. Our study aimed to investigate the age-dependent deterioration in lung function and the effects of treatment with Fenretinide formulation (LAU-7b) in Cftr knockout (KO) mice.

Methods

Non-invasive whole-body plethysmography (WBP) was done to measure the baseline lung functions of KO and wild-type (WT) mice at the ages of 2 and 4 months. Mice were then treated for 21 days with PBS or 10 mg/kg/day LAU-7b initiated at 4 and 7 months. Standard airway resistance measurements, haematoxylin and eosin staining, and analysis of lipids, and markers of oxidation were performed.

Results

The 4- and 7-month-old KO mice had significantly higher lung enhanced pause (Penh) and resistance values than age-matched WT mice and 2-month-old KO mice. Likewise, analysis of ceramides showed that PBS-treated mice had higher levels of long-chain ceramides (LCCs; C14-C18) and lower levels of very-long-chain ceramides (VLCCs; C24-C26) compared to LAU-7b-treated mice. Cftr KO mice displayed markedly greater inflammatory cell infiltration and epithelial hyperplasia at the ages of 2, 4, and 7 months compared to WT. LAU-7b treatment significantly diminished this cellular infiltration and epithelial hyperplasia compared to PBS-treated mice.

Conclusion

Our results demonstrate a progressive age-dependent decline in lung function in Cftr KO mice. Treatment with LAU-7b corrects the lipid imbalance observed in the aging KO and WT mice and, more importantly, inhibits the age-dependent deterioration in lung physiology and histopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis PB (2006) Cystic fibrosis since 1938. Am J Respir Crit Care Med 173:475–482. https://doi.org/10.1164/rccm.200505-840OE

    Article  PubMed  Google Scholar 

  2. Brown SD, White R, Tobin P (2017) Keep them breathing: cystic fibrosis pathophysiology, diagnosis, and treatment. JAAPA 30:23–27. https://doi.org/10.1097/01.JAA.0000515540.36581.92

    Article  PubMed  Google Scholar 

  3. VanDevanter DR, Kahle JS, O’Sullivan AK et al (2016) Cystic fibrosis in young children: a review of disease manifestation, progression, and response to early treatment. J Cyst Fibros 15:147–157. https://doi.org/10.1016/j.jcf.2015.09.008

    Article  PubMed  Google Scholar 

  4. Castellani C, Assael BM (2017) Cystic fibrosis: a clinical view. Cell Mol Life Sci 74:129–140. https://doi.org/10.1007/s00018-016-2393-9

    Article  CAS  PubMed  Google Scholar 

  5. Rey MM, Bonk MP, Hadjiliadis D (2019) Cystic fibrosis: emerging understanding and therapies. Annu Rev Med 70:197–210. https://doi.org/10.1146/annurev-med-112717-094536

    Article  CAS  PubMed  Google Scholar 

  6. Keiser NW, Engelhardt JF (2011) New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med 17:478–483. https://doi.org/10.1097/MCP.0b013e32834b14c9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilke M, Buijs-Offerman RM, Aarbiou J et al (2011) Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 10(Suppl 2):S152–S171. https://doi.org/10.1016/S1569-1993(11)60020-9

    Article  CAS  PubMed  Google Scholar 

  8. Kent G, Iles R, Bear CE et al (1997) Lung disease in mice with cystic fibrosis. J Clin Investig 100:3060–3069. https://doi.org/10.1172/JCI119861

    Article  CAS  PubMed  Google Scholar 

  9. Gyömörey K, Garami E, Galley K et al (2001) Non-CFTR chloride channels likely contribute to secretion in the murine small intestine. Pflugers Arch. https://doi.org/10.1007/s004240100654

    Article  PubMed  Google Scholar 

  10. Guilbault C, Martin P, Houle D et al (2005) Cystic fibrosis lung disease following infection with Pseudomonas aeruginosa in Cftr knockout mice using novel non-invasive direct pulmonary infection technique. Lab Anim 39:336–352. https://doi.org/10.1258/0023677054306944

    Article  CAS  PubMed  Google Scholar 

  11. Guilbault C, Novak JP, Martin P et al (2006) Distinct pattern of lung gene expression in the Cftr-KO mice developing spontaneous lung disease compared with their littermate controls. Physiol Genomics 25:179–193. https://doi.org/10.1152/physiolgenomics.00206.2005

    Article  CAS  PubMed  Google Scholar 

  12. Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7. https://doi.org/10.1165/rcmb.2006-0184TR

    Article  CAS  PubMed  Google Scholar 

  13. Guilbault C, De Sanctis JB, Wojewodka G et al (2008) Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am J Respir Cell Mol Biol 38:47–56. https://doi.org/10.1165/rcmb.2007-0036OC

    Article  CAS  PubMed  Google Scholar 

  14. Guilbault C, Wojewodka G, Saeed Z et al (2009) Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am J Respir Cell Mol Biol 41:100–106. https://doi.org/10.1165/rcmb.2008-0279OC

    Article  CAS  PubMed  Google Scholar 

  15. Garić D, De Sanctis JB, Wojewodka G et al (2017) Fenretinide differentially modulates the levels of long- and very long-chain ceramides by downregulating Cers5 enzyme: evidence from bench to bedside. J Mol Med (Berl) 95:1053–1064. https://doi.org/10.1007/s00109-017-1564-y

    Article  CAS  Google Scholar 

  16. Garić D, De Sanctis JB, Dumut DC et al (2019) Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158538. https://doi.org/10.1016/j.bbalip.2019.158538

    Article  CAS  PubMed  Google Scholar 

  17. Youssef M, De Sanctis JB, Kanagaratham C et al (2020) Efficacy of optimized treatment protocol using LAU-7b formulation against ovalbumin (OVA) and house dust mite (HDM)-induced allergic asthma in atopic hyperresponsive A/J Mice. Pharm Res 37(2):31. https://doi.org/10.1007/s11095-019-2743-z

    Article  CAS  PubMed  Google Scholar 

  18. Garić D, De Sanctis JB, Shah J et al (2019) Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: the importance of side chain. Prog Lipid Res 74:130–144. https://doi.org/10.1016/j.plipres.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  19. Canals D, Salamone S, Hannun YA (2018) Visualizing bioactive ceramides. Chem Phys Lipids 216:142–151. https://doi.org/10.1016/j.chemphyslip.2018.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurz J, Parnham MJ, Geisslinger G, Schiffmann S (2019) Ceramides as novel disease biomarkers. Trends Mol Med 25:20–32. https://doi.org/10.1016/j.molmed.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Willis-Owen SAG, Spiegel S et al (2018) The ORMDL3 Asthma Gene Regulates ICAM1 and has Multiple Effects on Cellular Inflammation. Am J Respir Crit Care Med 199:478–488. https://doi.org/10.1164/rccm.201803-0438OC

    Article  Google Scholar 

  22. Debeuf N, Zhakupova A, Steiner R et al (2019) The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J Allergy Clin Immunol 6749:30943–30951. https://doi.org/10.1016/j.jaci.2019.06.041

    Article  CAS  Google Scholar 

  23. Kiefer K, Casas J, García-López R, Vicente R (2019) Ceramide imbalance and impaired TLR4-mediated autophagy in BMDM of an ORMDL3-overexpressing mouse model. Int J Mol Sci. https://doi.org/10.3390/ijms20061391

    Article  PubMed  PubMed Central  Google Scholar 

  24. Folch J, Lees M, Sloane SGH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  25. Rafeeq MM, Murad HAS (2017) Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 15:84. https://doi.org/10.1186/s12967-017-1193-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng K, Ashby D, Smyth RL (2015) Oral steroids for long-term use in cystic fibrosis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000407.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Balfour-Lynn IM, Welch K (2016) Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001915.pub5

    Article  PubMed  Google Scholar 

  28. Munder A, Wölbeling F, Kerber-Momot T et al (2011) Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent. Respir Res 12:148. https://doi.org/10.1186/1465-9921-12-148

    Article  PubMed  PubMed Central  Google Scholar 

  29. Teichgräber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391. https://doi.org/10.1038/nm1748

    Article  CAS  PubMed  Google Scholar 

  30. Kerem E (2017) Cystic fibrosis: priorities and progress for future therapies. Paediatr Respir Rev 24:14–16. https://doi.org/10.1016/j.prrv.2017.06.004

    Article  PubMed  Google Scholar 

  31. Camerini T, Mariani L, De Palo G et al (2001) Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer. J Clin Oncol 19:1664–1670. https://doi.org/10.1200/JCO.2001.19.6.1664

    Article  CAS  PubMed  Google Scholar 

  32. Veronesi U, De Palo G, Marubini E et al (1999) Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 91:1847–1856. https://doi.org/10.1093/jnci/91.21.1847

    Article  CAS  PubMed  Google Scholar 

  33. Garaventa A, Luksch R, Lo Piccolo MS et al (2003) Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clin Cancer Res 9:2032–2039

    CAS  PubMed  Google Scholar 

Download references

Funding

This research has been supported by Cystic Fibrosis Canada Grant #494470 to BP, DR; ENOCH Molecular, cellular and clinical approach to healthy ageing grant ENOCH; Registration Number: CZ.02.1.01/0.0/0.0/16_019/ 0000868 MH, DR, JdS. CIHR Grant FRN115117 #2433990; RI-MUHC Account 4925 to DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta Radzioch.

Ethics declarations

Conflict of interest

The corresponding author, Dr. Radzioch, Principal Investigator at the Research Institute of the McGill University Health Centre and Professor at McGill University, is a minor shareholder of Laurent Pharmaceuticals Inc. which generously (free of charge) provided the clinical capsules used for treatment of Cftr KO mice and their littermate controls. The studies presented have not been otherwise financially supported by Laurent Pharmaceuticals Inc. and neither the first author nor any other co-author have any conflicts of interest to declare associated with this publication.

Ethical Approval

All experimental procedures were conducted in accordance with and approval of the Animal Care Committee of the McGill University Health Centre, Montreal, Quebec, Canada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, M., De Sanctis, J.B., Shah, J. et al. Age-Dependent Progression in Lung Pathophysiology can be Prevented by Restoring Fatty Acid and Ceramide Imbalance in Cystic Fibrosis. Lung 198, 459–469 (2020). https://doi.org/10.1007/s00408-020-00353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-020-00353-2

Keywords

Navigation