Skip to main content
Log in

The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging

  • Editorial
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Today the majority of clinical molecular imaging procedures are carried out with single-photon emitters and gamma cameras, in planar mode and single-photon emission computed tomography (SPECT) mode. Thanks to the development of advanced multi-pinhole collimation technologies, SPECT imaging of small experimental animals is rapidly gaining in popularity. Whereas resolutions in routine clinical SPECT are typically larger than 1 cm (corresponding to >1,000 μl), it has recently proved possible to obtain spatial resolutions of about 0.35 mm (≈0.04 μl) in the mouse. Meanwhile, SPECT systems that promise an even better performance are under construction. The new systems are able to monitor functions in even smaller structures of the mouse than was possible with dedicated small animal positron emission tomography (≈1 mm resolution, corresponding to 1 μl). This paper provides a brief history of image formation with pinholes and explains the principles of pinhole imaging and pinhole tomography and the basics of modern image reconstruction methods required for such systems. Some recently introduced ultra-high-resolution small animal SPECT instruments are discussed and new avenues for improving system performance are explored. This may lead to many completely new biomedical applications. We also demonstrate that clinical SPECT systems with focussing pinhole gamma cameras will be able to produce images with a resolution that may become superior to that of PET for major clinical applications. A design study of a cardiac pinhole SPECT system indicates that the heart can be imaged an order of magnitude faster or with much more detail than is possible with currently used parallel-hole SPECT (e.g. 3–4 mm instead of ≈8 mm system resolution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. King MA, Pretorius PH, Farncombe T, Beekman FJ. Introduction to the physics of molecular imaging with radioactive tracers in small animals. J Cell Biochem Suppl 2002;39:221–30.

    Article  PubMed  CAS  Google Scholar 

  2. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50(22):R45–61.

    Article  PubMed  CAS  Google Scholar 

  3. Meikle SR, Beekman FJ, Rose SE. Complementary molecular imaging technologies: high resolution SPECT, PET and MRI (invited review). Drug Discov Today Technol 2006;3(2):187–94

    Google Scholar 

  4. Land MF. The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima). Proc Biol Sci 2003;270(1511):185–8.

    Article  PubMed  Google Scholar 

  5. Hammond JH. The camera obscura, a chronicle. Bristol: Adam Hilger Ltd; 1981.

    Google Scholar 

  6. Marignier JL. Historical light on photography. Nature 1990;346:115.

    Article  Google Scholar 

  7. Copeland DE, Benjamin EW. Pinhole camera for gamma-ray sources. Nucleonics 1949;5:45–9.

    Google Scholar 

  8. Anger HO. Scintillation camera. Rev Sci Instr 1958;29:27–33.

  9. Mallard JR, Myers MJ. The performance of a gamma camera for the visualization of radioactive isotopes in vivo. Phys Med Biol 1963;8:165–82.

    Article  PubMed  CAS  Google Scholar 

  10. Wanet PM, Sand A, Abramovici J. Physical and clinical evaluation of high-resolution thyroid pinhole tomography. J Nucl Med 1996;37:2017–20.

    PubMed  CAS  Google Scholar 

  11. Wouters A, Simon KM, Hirschberg JG. Direct method of decoding multiple images. Appl Opt 1973;12:1871.

    Google Scholar 

  12. Chang LT, Kaplan SN, Macdonald B, Perez-Mendez V, Shiraishi L. A method of tomographic imaging using a multiple pinhole coded aperture. J Nucl Med 1974;15:1063–5.

    PubMed  CAS  Google Scholar 

  13. Seret A, Defrise M, Blocklet D. 180° Pinhole SPET with a tilted detector and OS-EM reconstruction: phantom studies and potential clinical applications. Eur J Nucl Med Mol Imaging 2001;28(12):1836–41.

    Article  CAS  Google Scholar 

  14. Seret A, Flérès D, Firket O, Defrise M. Body contour 180° pinhole SPET with or without tilted detector: a phantom study. Eur J Nucl Med Mol Imaging 2003;30(9):1205–10.

    Article  PubMed  Google Scholar 

  15. Maillefert JF, Toubeau M, Piroth C, Piroth L, Brunotte F, Tavernier C. Bone scintigraphy equipped with a pinhole collimator for diagnosis of avascular necrosis of the femoral head. Clin Rheumatol 1997;16(4):372–7.

    Article  PubMed  CAS  Google Scholar 

  16. Pak Y-H, Bahk Y-W. Combined scintigraphic and radiographic diagnosis of bone and joint diseases. Berlin Heidelberg New York: Springer; 2004.

    Google Scholar 

  17. Spanu A, Falchi A, Manca A, Marongiu P, Cossu A, Pisu N, et al. The usefulness of neck pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism. J Nucl Med 2004;45(1):40–8.

    PubMed  Google Scholar 

  18. Vogel RA, Kirch D, LeFree M, Steele P. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med 1978;19:648–54.

    PubMed  CAS  Google Scholar 

  19. Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution small-field-of-view SPECT. Phys Med Biol 1994;39:425–37.

    Article  PubMed  CAS  Google Scholar 

  20. Beekman FJ, McElroy DP, Berger F, Gambhir SS, Hoffman EJ, Cherry SR. Towards in vivo nuclear microscopy: I-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 2002;29(7):933–8.

    Article  PubMed  Google Scholar 

  21. Metzler SD, Bowsher JE, Greer KL, Jaszczak RJ. Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration. IEEE Trans Med Imaging 2002;21(8):878–87.

    Article  PubMed  CAS  Google Scholar 

  22. Accorsi R, Metzler SD. Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging 2004;23(6):750–63.

    Article  PubMed  Google Scholar 

  23. Palmer J, Wollmer P. Pinhole emission computed tomography: method and experimental evaluation. Phys Med Biol 1990;35:339–50.

    Article  PubMed  CAS  Google Scholar 

  24. Habraken JBA, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 2001;42:1863–9.

    PubMed  CAS  Google Scholar 

  25. Wu MC, Tang HR, Gao DW, Ido A, O’Connell JW, Hasegawa BH, et al. ECG gated pinhole SPECT in mice with millimeter resolution. IEEE Trans Nucl Sci 2000;47:1218–27.

    Article  Google Scholar 

  26. McElroy DP, MacDonald LR, Beekman FJ, Wang YC, Patt BE, Iwanczyk JS, et al. Performance evaluation of A-SPECT: a high resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci 2002;49:2139–47.

    Article  Google Scholar 

  27. Acton PD, Choi SR, Plossl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002;29:691–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high-resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995;26:2282–9.

    Google Scholar 

  29. Moore SC, Zimmerman RE, Mahmood A, Mellen R, Lim CB. A triple-detector multi-pinhole system for SPECT imaging of rodents. J Nucl Med 2005;45(5):97P.

    Google Scholar 

  30. Schramm NU, Ebel G, Engeland U, Schurrat T, Béhé M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50(3):315–20.

    Article  Google Scholar 

  31. Meikle SR, Fulton RR, Eberl S, Dahlbom M, Wong KP, Fulham MJ. An investigation of coded aperture imaging for small animal SPECT. IEEE Trans Nucl Sci 2001;48:816–21.

    Article  Google Scholar 

  32. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;A1:612–9.

    Article  Google Scholar 

  33. Lange K, Carson REM. Reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16.

    PubMed  CAS  Google Scholar 

  34. Furenlid LR, Chen Y, Kim H. SPECT imager design and data acquisition systems. In: Kupinski MA, Barrett HH, editors. Small animal SPECT imaging. New York: Springer Science+Business Media Inc.; 2005, p.115–38.

    Chapter  Google Scholar 

  35. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for sub-millimeter resolution tomography of radiolabeled molecules in mice. J Nucl Med 2005;46:1194–200.

    PubMed  Google Scholar 

  36. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  37. Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.

    PubMed  CAS  Google Scholar 

  38. Lalush DS, Wernick MN. Iterative Image reconstruction. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Academic Press; 2004.

    Google Scholar 

  39. Barrett HH, Swindell W. Radiological imaging. The theory of image formation, detection, and processing. New York: Academic Press; 1981.

    Google Scholar 

  40. Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT: simulation results. IEEE Trans Nucl Sci 1993;40:1123–9.

    Article  CAS  Google Scholar 

  41. Rowe RK, Aarsvold JN, Barrett HH, Chen JC, Klein WP, Moore BA, et al. A stationary hemispherical SPECT imager for three-dimensional brain imaging. J Nucl Med 1993;34:474–80.

    PubMed  CAS  Google Scholar 

  42. Patton DD, Barrett HH, Chen JC, Klein WP, Pang I, Richards D, et al. FASTSPECT—a 4-dimensional brain imager. J Nucl Med 1994;35(5):P93, Suppl S.

    Google Scholar 

  43. Furenlid LR, Wilson DW, Chen Y, Kim H, Pietrski PJ, Crawford MJ, et al. FastSPECT II: a second-generation high-resolution dynamic SPECT imager. IEEE Trans Nucl Sci 2004;51:631–5.

    Article  Google Scholar 

  44. Kastis GK, Barber HB, Barrett HH, Gifford HC, Pang IW, Patton DD, et al. High resolution SPECT imager for three-dimensional imaging of small animals [abstract]. J Nucl Med 1998;39(5):25 Suppl S 9P.

    Google Scholar 

  45. Liu Z, Kastis GA, Stevenson GD, Barrett HH, Furenlid LR, Kupinski MA, et al. Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 2002;43(7):933–9.

    PubMed  Google Scholar 

  46. Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92.

    Article  PubMed  Google Scholar 

  47. van der Have F, Vastenhouw B, Rentmeester MCM, Beekman FJ. System calibration and statistical image reconstruction for sub-mm stationary pinhole SPECT. Conference record of the 2005 Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico, M11-291, 2005.

  48. Vastenhouw B, Beekman FJ. Sub-mm total body mouse imaging with U-SPECT-I. J Nucl Med 2007 (in press).

  49. Kupinski MA, Barrett HH, editors. Small-animal SPECT imaging. New York: Springer Science+Business Media Inc., 2005.

    Google Scholar 

  50. Zeniya T, Watabe H, Aoi T, Kyeong MK, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT. Eur J Nucl Med Mol Imaging 2004;31(8):1166–72.

    Article  PubMed  Google Scholar 

  51. Beque D, Nuyts J, Suetens P, Bormans G. IEEE Trans Med Imaging 2003;22(5):599–612.

    Article  PubMed  Google Scholar 

  52. Metzler SD, Greer KL, Jaszczak RJ. Determination of mechanical and electronic shifts for pinhole SPECT using a single point source. IEEE Trans Med Imaging 2005;24(3):361–70.

    Article  PubMed  CAS  Google Scholar 

  53. Rentmeester MCM, van der Have F, Beekman FJ. Continuous model of multi-pinhole SPECT devices. Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico. IEEE 2005;M03–283.

  54. Cao ZX, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol 2005;50(19):4609–24.

    Article  PubMed  Google Scholar 

  55. Barber HB. Applications of semiconductor detectors to nuclear medicine. Nucl Instrum Methods Phys Res A 1999;436:102–10.

    Article  CAS  Google Scholar 

  56. Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Methods Phys Res A 2003;512:265–71.

    Article  CAS  Google Scholar 

  57. He Z, Li W, Knoll GF, Wehe DK, Berry J, Stahle CM. 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl Instrum Methods Phys Res A 1999;A422:173–8.

    Article  Google Scholar 

  58. Lees JE, Fraser GW, Keay A, Bassford D, Ott R, Ryder W. The high resolution gamma imager (HRGI): a CCD based camera for medical imaging. Nucl Instrum Methods Phys Res A 2003;513(1–2):23–6.

    Article  CAS  Google Scholar 

  59. Llopart X, Campbell M, Dinapoli R, Segundo DS, Pemigotti E. Medipix2: a 64-k pixel readout chip with 55-μm square elements working in single photon counting mode. IEEE Trans Nucl Sci 2002;49(5):2279–83.

    Article  Google Scholar 

  60. Matherson KJ, Barber HB, Barrett HH, Eskin JD, Dereniak EL, Marks DG, et al. Progress in the development of larger-area modular 64× 64 CdZnTe imaging arrays for nuclear medicine. IEEE Trans Nucl Sci 1998;45:354–8.

    Article  CAS  Google Scholar 

  61. Miyaata E, Tamur K. Novel photon-counting detector for 0.1–100 keV X-ray imaging possessing high spatial resolution. Jpn J Appl Phys 2003;42:L1201–04, Part 2 No 10A.

    Article  CAS  Google Scholar 

  62. Miyataa E, Mikia M, Tawaa N, Kamiyamaa D, Miyaguchi K. Development of new X-ray imaging device sensitive to 0.1–100 keV. Nucl Instrum Methods Phys Res A 2004;525:122–5.

    Article  CAS  Google Scholar 

  63. Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci 2006;53(1):54–8.

    Article  CAS  Google Scholar 

  64. Vavrik D, Jakubek J, Visschers J, Pospisil S, Ponchut C, Zemankova J. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy. Nucl Instrum Methods Phys Res A 2002;487(1–2):216–23.

    Article  CAS  Google Scholar 

  65. de Vree GA, Westra AH, van der Have F, Moody I, Ligtvoet CM, Beekman FJ. Photon counting gamma camera based on an electron-multiplying CCD. IEEE Trans Nucl Sci 2005;52(3):580–8.

    Article  Google Scholar 

  66. Beekman FJ, de Vree GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol 2005;50(12):N109–19.

    Article  PubMed  Google Scholar 

  67. Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 2006;33(2):465–74.

    Article  PubMed  CAS  Google Scholar 

  68. Kastis GA, Wu MC, Balzer SJ, Wilson DW, Furenlid LR, Stevenson G, et al. Tomographic small-animal imaging using a high-resolution semiconductor camera. IEEE Trans Nucl Sci 2002;49(1):172–5.

    Article  CAS  Google Scholar 

  69. Meng LJ, Clinthorne NH, Skinner S, Hay RV, Gross M. Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging. IEEE Trans Nucl Sci 2006; accepted for publication.

  70. Funk T, Després P, Barber WC, Shah KS, Hasegawa BH. A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 2006;33(5):1259–67.

    Article  PubMed  Google Scholar 

  71. Beekman FJ. Stralingsdetectieinrichting. Dutch patent application, NL-1029558, July 2005.

  72. Walrand S, Jamar F, de Jong M, Pauwels S. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections. J Nucl Med 2005;46(11):1872–80.

    PubMed  Google Scholar 

  73. Huang Q, Zeng GL. An analytical algorithm for skew-slit imaging geometry with nonuniform attenuation correction. Med Phys 2006;33(4):997–1004.

    Article  PubMed  Google Scholar 

  74. Snigirev A, Kohn V, Snigireva I, Lengeler B. A compound refractive lens for focusing high-energy X-rays. Nature 1996;384:49–51.

    Article  CAS  Google Scholar 

  75. Pivovaroff MJ, Barber WB, Christensen FE, Craig WW, Decker T, Epstein M, et al. Small-animal radionuclide imaging with focusing gamma-ray optics. Proc SPIE Int Soc Opt Eng 2004;5199:147.

    Google Scholar 

  76. Serlemitsos PJ. Conical foil X-ray mirrors: performance and projections. Appl Opt 1988;27(8):1447–52.

    Article  CAS  Google Scholar 

  77. Serlemitsos PJ, Soong Y. Foil X-ray mirrors. Astrophys Space Sci 1996;239:177–96.

    Article  CAS  Google Scholar 

  78. Hildebrandt G, Bradazek H. Approaching real X-ray optics. The Rigaku Journal 2000;17:13–22.

    CAS  Google Scholar 

  79. Weisenberger AG, Gleason SS, Goddard J, Kross B, Majewski S, Meikle SR, et al. A restraint-free small animal SPECT imaging system with motion tracking. IEEE Trans Nucl Sci 2005;52(3):638–44.

    Google Scholar 

  80. Land MF. The optical structures of animal eyes. Curr Biol 2005;15(9):R319–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Cynthia Jongen, Dr. Steven Staelens, Dr. Mart Rentmeester, Dr. Wojtek Zbijewski, Dr. Julia Huijbregts, Dr. Jeroen Pasterkamp, Brendan Vastenhouw (University Medical Centre Utrecht) and Prof. Brian Hutton (University College London) for many constructive comments. Dr. Freek Beekman is a board member and share holder of Molecular Imaging Laboratories, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freek Beekman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beekman, F., van der Have, F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34, 151–161 (2007). https://doi.org/10.1007/s00259-006-0248-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0248-6

Navigation