Skip to main content

Advertisement

Log in

Development of tolerance and sensitization to different opioid agonists in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Despite numerous investigations, the mechanisms underlying the development of opioid tolerance are far from clear. However, several in vitro studies implicated a protective role of agonist-induced μ-opioid receptor endocytosis in the development of opioid tolerance. Moreover, we have recently demonstrated that the high-efficacy agonist etonitazene promotes rapid endocytosis of μ-opioid receptors, whereas the agonist morphine and the low-efficacy agonist buprenorphine fail to promote detectable receptor endocytosis in μ-opioid receptor expressing HEK293 cells.

Objectives

The present study explored the effects of these opioids on the development of tolerance and sensitization in rats in vivo.

Methods

The opioid effects were quantified using the hot plate, electric tail root stimulation, and the locomotor activity chamber in male Wistar rats. Dose–response curves were generated for each test drug. To induce tolerance, equieffective doses of etonitazene, morphine, and buprenorphine were administered daily for 29 days.

Results

We found that chronic treatment with the noninternalizing drugs buprenorphine and morphine resulted in a greater development of tolerance than etonitazene. In addition, the sensitization to the locomotor stimulant effect was high after buprenorphine and morphine, but was lacking after chronic etonitazene application.

Conclusion

The results support a role for the endocytotic potency of agonists in the development of tolerance and addiction during long-term opioid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Borgland SL (2001) Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol 28:147–154

    Article  PubMed  CAS  Google Scholar 

  • Borgland SL, Connor M, Osborne PB, Furness JB, Christie MY (2003) Opioid agonists have different efficacy profiles for 6 protein activation, rapid desensitization, and endocytosis of mu- opioid receptors. J Biol Chem 278:18776–18784

    Article  PubMed  CAS  Google Scholar 

  • Cowan A (2003) Buprenorphine: new pharmacological aspects. Int J Clin Pract Suppl 133:3–8

    PubMed  CAS  Google Scholar 

  • Cowan A, Lewis JW, McFarlane IR (1977) Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br J Pharmacol 60:537–545

    PubMed  CAS  Google Scholar 

  • Cox BM (2005) Agonists at μ-opioid receptors spin the wheels to keep the action going. Mol Pharmacol 67:12–14

    Article  PubMed  CAS  Google Scholar 

  • Duttaroy A, Yoburn BC (1995) The effect of intrinsic efficacy on opioid tolerance. Anesthesiology 82:1226–1236

    Article  PubMed  CAS  Google Scholar 

  • Emmerson PJ, Clark MJ, Mansour A, Akil H, Woods JH, Medzihradsky F (1996) Characterization of opioid agonist efficacy in a C6 glioma cell line expressing the mu opioid receptor. J Pharmacol Exp Ther 278:1121–1127

    PubMed  CAS  Google Scholar 

  • Freye E, Latasch L (2003) Development of opioid tolerance—molecular mechanisms and clinical consequences. Anasthesiol Intensivmed Notfallmed Schmerzther 38:14–26

    Article  PubMed  CAS  Google Scholar 

  • He L, Fong J, von Zastrow M, Whistler JL (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hsu MM, Wong CS (2000) The roles of pain facilitatory systems in opioid tolerance. Acta Anaesthesiol Sin 38:155–166

    PubMed  CAS  Google Scholar 

  • Jaba IM, Luncanu I, Mungiu OC (2001) Opioid tolerance and dependence—pharmacological aspects. Rev Med Chir Soc Med Nat Ias 105:444–450

    CAS  Google Scholar 

  • Kalivas PW, Duffy P (1987) Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. J Pharmacol Exp Ther 241:204–212

    PubMed  CAS  Google Scholar 

  • Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV, Kang L, Evans CJ, von Zastrow M (1996) Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271:19021–19024

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Schulz S, Schröder H, Wolf R, Raulf E, Höllt V (1998) Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. J Biol Chem 273:13652–13657

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Schulz S, Pfeiffer M, Klutzny M, Schröder H, Kahl E, Höllt V (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem 276:31408–31414

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Brandenburg LO, Liang Y, Schulz S, Beyer A, Schröder H, Höllt V (2004) Phospholipase D2 modulates agonist-induced μ-opioid receptor desensitization and resensitization. J Neurochem 88:680–688

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Widera A, Bartzsch K, Schulz S, Brandenburg LO, Wundrack N, Beyer A, Grecksch G, Höllt V (2005) Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 67:280–287

    Article  PubMed  CAS  Google Scholar 

  • Kornetzky C (2004) Brain-stimulation reward, morphine-induced oral stereotypy, and sensitization: implication for abuse. Neurosci Biobehav Rev 27:777–786

    Article  Google Scholar 

  • Law PY, Erickson LJ, El-Kouhen R, Dicker L, Solberg J, Wang W, Miller E, Burd AL, Loh HH (2000) Receptor density and recycling affect the rate of agonist-induced desensitization of μ-opioid receptor. Mol Pharmacol 58:388–398

    PubMed  CAS  Google Scholar 

  • Mello NK, Mendelson JH, Lucas SE, Gastfried DR, Teoh SK, Holman BL (1993) Buprenorphine treatment of opiate and cocaine abuse: clinical and preclinical studies. Harv Rev Psychiatry 1:168–183

    Article  PubMed  CAS  Google Scholar 

  • Moolten MS, Fishman JB, Chen JC, Carlson KR (1993) Etonitazene: an opioid selective for the mu receptor types. Life Sci 2:PL199–PL203

    Article  Google Scholar 

  • Paronis CA, Holtzman SG (1992) Development of tolerance to the analgesic activity of mu agonists after continuous infusion of morphine, meperidine or fentanyl in rats. J Pharmacol Exp Ther 262:1–9

    PubMed  CAS  Google Scholar 

  • Pick CG, Peter Y, Schreiber S, Weizman R (1997) Pharmacological characterization of buprenorphine, a mixed agonist–antagonist with kappa 3 analgesia. Brain Res 744:41–46

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitisation theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Höllt V (2004) Morphine induces terminal μ-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 23:3282–3289

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Schuckit MA (1983) Animal models of stimulant-induced psychosis. In: Creese I (ed) Stimulants: neurochemical, behavioral, and clinical perspectives. Raven, New York, pp 131–167

    Google Scholar 

  • Selley DE, Sim LJ, Xiao R, Liu Q, Childers SR (1997) mu-Opioid receptor-stimulated guanosine-5′-O-(gamma-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy. Mol Pharmacol 51:87–96

    PubMed  CAS  Google Scholar 

  • Spanagel R (1995) Modulation of drug-induced sensitization processes by endogenous opioid systems. Behav Brain Res 70:37–49

    Article  PubMed  CAS  Google Scholar 

  • Stevens CW, Yaksh TL (1989) Time course characteristics of tolerance development to continuously infused antinociceptive agents in rat spinal cord. J Pharmacol Exp Ther 251:216–223

    PubMed  CAS  Google Scholar 

  • Traynor JR, Nahorski SR (1995) Modulation by mu-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol Pharmacol 47:848–854

    PubMed  CAS  Google Scholar 

  • Trujillo KA, Kubota KS, Warmoth KP (2004) Continuous administration of opioids produces locomotor sensitization. Pharmacol Biochem Behav 79:661–669

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2002) Behavioral pharmacology of buprenorphine, with a focus on preclinical models of reward and addiction. Psychopharmacology 161:1–16

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Schoffelmeer ANM, Mulder AH, De Vries TJ (1999) Dopaminergic mechanisms mediating the long-term expression of locomotor sensitization following pre-exposure to morphine or amphetamine. Psychopharmacology 143:244–253

    Article  PubMed  CAS  Google Scholar 

  • Walker EA, Young AM (2001) Differential tolerance to antinociceptive effects of mu-opioids during repeated treatment with etonitazene, morphine, or buprenorphine in rats. Psychopharmacology 154:131–142

    Article  PubMed  CAS  Google Scholar 

  • Walker EA, Butelman ER, DeCosta BR, Woods JH (1993) Opioid thermal antinociception in rhesus monkeys: receptor mechanisms and temperature dependency. J Pharmacol Exp Ther 267:280–286

    PubMed  CAS  Google Scholar 

  • Walker EA, Richardson TM, Young AM (1997) Tolerance and cross-tolerance to morphine-like stimulus effects of mu opioids in rats. Psychopharmacology (Berl) 133:17–28

    Article  CAS  Google Scholar 

  • Walker EA, Zernig G, Young AM (1998) In vivo apparent affinity and efficacy estimates for mu opiates in a rat tail-withdrawal assay. Psychopharmacology (Berl) 136:15–23

    Article  CAS  Google Scholar 

  • Walsh SL, Eissenberg T (2003) The clinical pharmacology of buprenorphine: extrapolating from the laboratory to the clinic. Drug Alcohol Depend 70:S13–27 (Suppl)

    Article  PubMed  CAS  Google Scholar 

  • Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–746

    Article  PubMed  CAS  Google Scholar 

  • Zang MW, Liu JS (1999) Blockade of opioid tolerance and dependence by NMDA receptor antagonist. Sheng Li Ke Xue Jui Zhan 30:207–213

    CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Dehmel and G. Schulze for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Grecksch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grecksch, G., Bartzsch, K., Widera, A. et al. Development of tolerance and sensitization to different opioid agonists in rats. Psychopharmacology 186, 177–184 (2006). https://doi.org/10.1007/s00213-006-0365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0365-8

Keywords

Navigation