Skip to main content

Advertisement

Log in

Small and intermediate conductance Ca2+-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The SK/IK family of small and intermediate conductance calcium-activated potassium channels contains four members, SK1, SK2, SK3 and IK1, and is important for the regulation of a variety of neuronal and non-neuronal functions. In this study we have analysed the distribution of these channels in human tissues and their cellular localisation in samples of colon and corpus cavernosum. SK1 mRNA was detected almost exclusively in neuronal tissues. SK2 mRNA distribution was restricted but more widespread than SK1, and was detected in adrenal gland, brain, prostate, bladder, liver and heart. SK3 mRNA was detected in almost every tissue examined. It was highly expressed in brain and in smooth muscle-rich tissues including the clitoris and the corpus cavernosum, and expression in the corpus cavernosum was upregulated up to 5-fold in patients undergoing sex-change operations. IK1 mRNA was present in surface-rich, secretory and inflammatory cell-rich tissues, highest in the trachea, prostate, placenta and salivary glands. In detailed immunohistochemical studies of the colon and the corpus cavernosum, SK1-like immunoreactivity was observed in the enteric neurons. SK3-like immunoreactivity was observed strongly in smooth muscle and vascular endothelium. IK1-like immunoreactivity was mainly observed in inflammatory cells and enteric neurons of the colon, but absent in corpus cavernosum. These distinctive patterns of distribution suggest that these channels are likely to have different biological functions and could be specifically targeted for a number of human diseases, such as irritable bowel syndrome, hypertension and erectile dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A–I
Fig. 3A–E
Fig. 4A–V
Fig. 5
Fig. 6A–F

Similar content being viewed by others

Abbreviations

SK/IK/BK:

Small/intermediate/big conductance calcium-activated potassium channels respectively

AHP:

Afterhyperpolarisation

EBIO:

1-ethyl-2-benzimidazolone

PCR:

Polymerase chain reaction

CNS:

Central nervous system

References

  • Ayajiki K, Fujioka, H, Okamura T (2000) Mechanisms underlying endothelium-dependent, nitric oxide/prostacyclin-independent, acetylcholine-induced relaxation in canine corpus cavernosum. Naunyn-Schmiedebergs Arch Pharmacol 362:448–451

    Google Scholar 

  • Boettger MK, Till S, Chen MX, Anand U, Otto WR, Plumpton C, Trezise DJ, Tate SN, Bountra C, Coward K, Birch R, Anand P (2002) Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 125:252–263

    Article  CAS  PubMed  Google Scholar 

  • Bond CT, Sprengel R, Bissonnette JM, Kaufmann WA, Pribnow D, Neelands T, Storck T, Baetscher M, Jerecic J, Maylie J, Knaus HG, Seeburg PH, Adelman JP (2000) Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289:1942–1946

    Article  CAS  PubMed  Google Scholar 

  • Bosch MA, Kelly MJ, Ronnekleiv OK (2002) Distribution, neuronal colocalization, and 17beta-E2 modulation of small conductance calcium-activated K+ channel (SK3) mRNA in the guinea pig brain. Endocrinology 143:1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Burnham MP, Bychkov R, Feletou M, Richards GR, Vanhoutte PM, Weston AH, Edwards G (2002) Characterization of an apamin-sensitive small-conductance Ca2+-activated K+ channel in porcine coronary artery endothelium: relevance to EDHF. Br J Pharmacol 135:1133–1143

    CAS  PubMed  Google Scholar 

  • Bychkov R, Burnham MP, Richards GR, Edwards G, Weston AH, Feletou M, Vanhoutte PM (2002) Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Br J Pharmacol 137:1346–1354

    Article  CAS  Google Scholar 

  • Castle NA (1999) Recent advances in the biology of small conductance calcium-activated potassium channels. In: Darbon H, Sabatier J-M (eds) Perspectives in drug discovery and design: animal toxins and potassium channels, vols 15/16. Kluwer, Dordrecht, pp 131–154

  • Dale TJ, Cryan JC, Chen MX, Trezise DJ (2002) Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese Hamster Ovary cells. Naunyn-Schmiedebergs Arch Pharmacol 366:470–477

    Google Scholar 

  • Desai R, Peretz A, Idelson H, Lazarovici P, Attali B (2000) Ca2+-activated K+ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization. J Biol Chem 275:39954–39963

    CAS  PubMed  Google Scholar 

  • Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272

    CAS  PubMed  Google Scholar 

  • Eichler I, Wibawa J, Grgic I, Knorr A, Brakemeier S, Pries AR, Hoyer J, Kohler R (2003) Selective blockade of endothelial Ca2+-activated small- and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation. Br J Pharmacol 138:594–601

    Article  CAS  PubMed  Google Scholar 

  • Fanger CM, Neben AL, Cahalan MD (2000) Differential Ca2+ influx, KCa channel activity, and Ca2+ clearance distinguish Th1 and Th2 lymphocytes. J Immunol 164:1153–1160

    CAS  PubMed  Google Scholar 

  • Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F (2001) Expression of Ca2+-activated K+ channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 281:C1727–C1733

    CAS  PubMed  Google Scholar 

  • Fujita A, Takeuchi T, Jun H, Hata F (2003) Localization of Ca2+-activated K+ channel, SK3, in fibroblast-like cells forming gap junctions with smooth muscle cells in the mouse small intestine. J Pharmacol Sci 92:35–42

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Bornstein JC, Smith TK, Murphy R, Pompolo S (1989) Correlated functional and structural analysis of enteric neural circuits. Arch Histol Cytol 52 [Suppl]:161–166

    Google Scholar 

  • Furness JB, Robbins HL, Selmer IS, Hunne B, Chen MX, Hicks GA, Moore S, Neylon CB (2003) Expression of intermediate conductance potassium channel immunoreactivity in neurons and epithelial cells of the rat gastrointestinal tract. Cell Tissue Res 314:179–189

    Article  CAS  PubMed  Google Scholar 

  • Gater PR, Haylett DG, Jenkinson DH (1985) Neuromuscular blocking agents inhibit receptor-mediated increases in the potassium permeability of intestinal smooth muscle. Br J Pharmacol 86:861–868

    CAS  PubMed  Google Scholar 

  • Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 2000 275:37137–37149

    Article  CAS  Google Scholar 

  • Guthbert AW, Hickman ME, Thorn P, MacVinish LJ (1999) Activation of Ca2+- and cAMP-sensitive K+ channels in murine colonic epithelia by 1-ethyl-2-benzimidazolone. Am J Physiol 277:C111–C120

    PubMed  Google Scholar 

  • Hamilton KL, Meads L, Butt AG (1999) 1-EBIO stimulates Cl secretion by activating a basolateral K+ channel in the mouse jejunum. Pflugers Arch Eur J Physiol 439:158–166

    Article  CAS  Google Scholar 

  • Herrera GM, Nelson MT (2002) Differential regulation of SK and BK channels by Ca2+ signals from Ca2+ channels and ryanodine receptors in guinea-pig urinary bladder myocytes. J Physiol 541:483–492

    Article  CAS  PubMed  Google Scholar 

  • Herrera GM, Pozo MJ, Zvara P, Petkov GV, Bond CT, Adelman JP, Nelson MT (2003) Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel. J Physiol 551:893–903

    Article  CAS  PubMed  Google Scholar 

  • Hosseini R, Benton DCH, Dunn PM, Jenkinson DH, Moss GWJ (2001) SK3 is an important component of K+ channels mediating the afterhyperpolarization in cultured rat SCG neurones. J Physiol 535:323–334

    CAS  PubMed  Google Scholar 

  • Jacobson D, Pribnow D, Herson PS, Maylie J, Adelman JP (2003) Determinants contributing to estrogen-regulated expression of SK3. Biochem Biophys Res Commun 303:660–668

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson DH, Haylett DG, Cook NS (1983) Calcium-activated potassium channels in liver cells. Cell Calcium 4:429–437

    Article  CAS  PubMed  Google Scholar 

  • Jensen BS, Odum N, Jorgensen NK, Christophersen P, Olesen SP (1999) Inhibition of T cell proliferation by selective block of Ca2+-activated K+ channels. Proc Natl Acad USA 96:10917–10921

    Article  CAS  Google Scholar 

  • Jensen BS, Strobaek D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2:401–422

    Google Scholar 

  • Jensen B, Hertz M, Christophersen P, Madsen L (2002) The Ca2+-activated K+ channel of intermediate conductance: a possible target for immune suppression. Expert Opin Ther Targets 6:623–636

    CAS  PubMed  Google Scholar 

  • Joiner WJ, Basavappa S, Vidyasagar S, Nehrke K, Krishnan S, Binder HJ, Boulpaep EL, Rajendran VM (2003) Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am J Physiol Gastrointest Liver Physiol 285:G185–G196

    CAS  PubMed  Google Scholar 

  • Keating DJ, Rychkov GY, Roberts ML (2001) Oxygen sensitivity in the sheep adrenal medulla: role of SK channels. Am J Physiol Cell Physiol 281:C1434–C1441

    CAS  PubMed  Google Scholar 

  • Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem 274:14838–14849

    CAS  PubMed  Google Scholar 

  • Klemm MF, Lang RJ (2002) Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol 29:18–25

    Article  CAS  PubMed  Google Scholar 

  • Koh SD, Dick GM, Sanders KM (1997) Small-conductance Ca2+-dependent K+ channels activated by ATP in murine colonic smooth muscle. Am J Physiol 273:C2010–C2021

    CAS  PubMed  Google Scholar 

  • Kohler M, Hirschberg B, Band CT, Kinie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    PubMed  Google Scholar 

  • Kong IK, Koh SD, Bayguinov O, Sanders KM (2000) Small conductance Ca2+-activated K+ channels are regulated by Ca2+-calmodulin-dependent protein kinase II in murine colonic myocytes. J Physiol 524:331–337

    CAS  PubMed  Google Scholar 

  • Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726

    Article  CAS  PubMed  Google Scholar 

  • MacVinish LI, Hickman ME, Mufti DA, Durrington HJ, Guthbert AW (1998) Importance of basolateral K+ conductance in maintaining Cl secretion in murine nasal and colonic epithelia. J Physiol 510:237–247

    CAS  PubMed  Google Scholar 

  • Marrelli SP, Eckmann MS, Hunte MS (2003) Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 285:H1590–H1599

    CAS  PubMed  Google Scholar 

  • Martensen SA, Strum JC (2003) Expression of novel genes in normal and diseased human tissues. In: Appasani K (ed) Perspectives in gene expression. Eaton, Massachusetts, pp 91–100

  • Murphy ME, Brayden JE (1995) Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries. J Physiol 489:723–724

    CAS  PubMed  Google Scholar 

  • Nagayama T, Fukushima Y, Hikichi H, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S (2000) Interaction of SK(Ca) channels and L-type Ca2+ channels in catecholamine secretion in the rat adrenal gland. Am J Physiol Regul Integr Comp Physiol 279: R1731–R1736

    CAS  PubMed  Google Scholar 

  • Pedarzani P, Kulik A, Muller M, Ballanti K, Stocker M (2000) Molecular determinants of Ca2+ dependent K+ channel function in rat dorsal vagal neurones. J Physiol 527:283–290

    CAS  PubMed  Google Scholar 

  • Pena TL, Chen SH, Konieczny SF, Rane SG (2000) Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem 275:13677–13682

    Article  CAS  PubMed  Google Scholar 

  • Prieto D, Simonsen U, Hernandez M, Garcia-Sacristan A (1998) Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Br J Pharmacol 123:1609–1620

    CAS  PubMed  Google Scholar 

  • Rader RK, Kahn LE, Anderson GD, Martin CL, Chinn KS, Gregory SA (1996) T cell activation is regulated by voltage-dependent and calcium-activated potassium channels. J Immunol 156:1425–1430

    CAS  PubMed  Google Scholar 

  • Rhodes AD, Bevan N, Patel K, Lee M, Rees S (1998) Mammalian expression of transmembrane receptors for pharmaceutical applications. Biochem Soc Trans 26:699–704

    CAS  PubMed  Google Scholar 

  • Ro S, Hatton WJ, Koh SD, Horowitz B (2001) Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 281:G964–G973

    CAS  PubMed  Google Scholar 

  • Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66:345–353

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Haylett DG (2000) The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br J Pharmacol 129:627–630

    CAS  PubMed  Google Scholar 

  • Stocker M, Pedarzani P (2000) Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 15:476–493

    CAS  PubMed  Google Scholar 

  • Storr M, Schusdziarra V, Allescher HD (2000) Inhibition of small conductance K+-channels attenuated melatonin-induced relaxation of serotonin-contracted rat gastric fundus. Can J Physiol Pharmacol 78:799–806

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93:124–131

    Article  CAS  PubMed  Google Scholar 

  • Terstappen GC, Pula G, Carignani C, Chen MX, Roncarti R (2000) Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology 40:772–783

    Article  Google Scholar 

  • Vanderwinden JM, Rumessen JJ, de Kerchove d’Exaerde A Jr, Gillard K, Panthier JJ, de Laet MH, Schiffmann SN (2002) Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res 310:349–358

    Article  CAS  PubMed  Google Scholar 

  • Wolfart J, Neuhoff H, Franz OJ (2001) Differential expression of the small-conductance calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456

    CAS  PubMed  Google Scholar 

  • Xia XM, Fakler B, Rivard A, Waymen A, Johnsonm-Pais T, Keen JE, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Chris Plumpton and Mrs. Amanda Jowett for preparing the antibodies, and Dr. Susanne Krege for providing the corpus cavernosum tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.X., Gorman, S.A., Benson, B. et al. Small and intermediate conductance Ca2+-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn-Schmiedeberg's Arch Pharmacol 369, 602–615 (2004). https://doi.org/10.1007/s00210-004-0934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0934-5

Keywords

Navigation