Skip to main content

Advertisement

Log in

Mechanisms of foam cell formation in atherosclerosis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol 6:365

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lao KH, Zeng L, Xu Q (2015) Endothelial and smooth muscle cell transformation in atherosclerosis. Curr Opin Lipidol 26:449–456

    Article  CAS  PubMed  Google Scholar 

  3. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC et al (2014) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–637

    Article  CAS  Google Scholar 

  4. Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, Cassella CP, Moore KJ, Ramsey SA, Miano JM et al (2015) Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol 35:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun HJ, Zhao MX, Liu TY, Ren XS, Chen Q, Li YH, Kang YM, Zhu GQ (2016) Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep 6:23596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hutchins PM, Heinecke JW (2015) Cholesterol efflux capacity, macrophage reverse cholesterol transport and cardioprotective HDL. Curr Opin Lipidol 26:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chistiakov DA, Bobryshev YV, Orekhov AN (2016) Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 20:17–28

    Article  CAS  PubMed  Google Scholar 

  8. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK (2013) Foam cells in atherosclerosis. Clin Chim Acta 424:245–252

    Article  CAS  PubMed  Google Scholar 

  9. Kume N, Moriwaki H, Kataoka H, Minami M, Murase T, Sawamura T, Masaki T, Kita T (2000) Inducible expression of LOX-1, a novel receptor for oxidized LDL, in macrophages and vascular smooth muscle cells. Ann N Y Acad Sci 902:323–327

    Article  CAS  PubMed  Google Scholar 

  10. Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm 2013:152786

    Article  CAS  Google Scholar 

  11. Rudijanto A (2007) The expression and down stream effect of lectin like-oxidized low density lipoprotein 1 (LOX-1) in hyperglycemic state. Acta Med Indones 39:36–43

    PubMed  Google Scholar 

  12. Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther 25:419–429

    Article  CAS  PubMed  Google Scholar 

  13. Favari E, Chroni A, Tietge UJ, Zanotti I, Escolà-Gil JC, Bernini F (2015) Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol 224:181–206

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen LB (1996) Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis. Atherosclerosis 123:1–15

    Article  CAS  PubMed  Google Scholar 

  15. Krouwer VJ, Hekking LH, Langelaar-Makkinje M, Regan-Klapisz E, Post JA (2012) Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability. Vasc Cell 4:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li YB, Zhang QH, Chen Z, He ZJ, Yi GH (2015) Oxidized low-density lipoprotein attenuated desmoglein 1 and desmocollin 2 expression via LOX-1/Ca(2+)/PKC-β signal in human umbilical vein endothelial cells. Biochem Biophys Res Commun 468:380–386

    Article  CAS  PubMed  Google Scholar 

  17. Wheeler GN, Parker AE, Thomas CL, Ataliotis P, Poynter D, Arnemann J, Rutman AJ, Pidsley SC, Watt FM, Rees DA et al (1991) Desmosomal glycoprotein DGI, a component of intercellular desmosome junctions, is related to the cadherin family of cell adhesion molecules. Proc Natl Acad Sci U S A 88:4796–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Syed SE, Trinnaman B, Martin S, Major S, Hutchinson J, Magee AI (2002) Molecular interactions between desmosomal cadherins. Biochem J 362:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Nieuw Amerongen GP, Vermeer MA, Nègre-Aminou P, Lankelma J, Emeis JJ, van Hinsbergh VW (2000) Simvastatin improves disturbed endothelial barrier function. Circulation 102:2803–2809

    Article  PubMed  Google Scholar 

  20. Kása A, Csortos C, Verin AD (2015) Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue Barriers 3:e974448. doi:10.4161/21688370.2014.974448

    Article  PubMed  CAS  Google Scholar 

  21. Ridker PM (2009) Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J Thromb Haemost 7(Suppl 1):332–339

    Article  CAS  PubMed  Google Scholar 

  22. Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, Orekhov AN (2015) Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol 184:436–445

    Article  PubMed  Google Scholar 

  23. Lacavé-Lapalun JV, Benderitter M, Linard C (2013) Flagellin or lipopolysaccharide treatment modified macrophage populations after colorectal radiation of rats. J Pharmacol Exp Ther 346:75–85

    Article  PubMed  CAS  Google Scholar 

  24. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN (2016) Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int 2016:9582430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  26. Namgaladze D, Brüne B (2014) Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization. Biochim Biophys Acta 1841:1329–1335

    Article  CAS  PubMed  Google Scholar 

  27. Ménégaut L, Thomas C, Lagrost L, Masson D (2017) Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Curr Opin Lipidol 28:19–26

    PubMed  Google Scholar 

  28. da Silva RF, Lappalainen J, Lee-Rueckert M, Kovanen PT (2016) Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis 248:170–178

    Article  PubMed  CAS  Google Scholar 

  29. De Paoli F, Staels B, Chinetti-Gbaguidi G (2014) Macrophage phenotypes and their modulation in atherosclerosis. Circ J 78:1775–1781

    Article  PubMed  CAS  Google Scholar 

  30. Ben J, Zhu X, Zhang H, Chen Q (2015) Class A1 scavenger receptors in cardiovascular diseases. Br J Pharmacol 172:5523–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S (2005) Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182:1–15

    Article  CAS  PubMed  Google Scholar 

  32. Matsumoto A, Naito M, Itakura H, Ikemoto S, Asaoka H, Hayakawa I, Kanamori H, Aburatani H, Takaku F, Suzuki H et al (1990) Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc Natl Acad Sci U S A 87:9133–9137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dai Y, Condorelli G, Mehta JL (2016) Scavenger receptors and non-coding RNAs: relevance in atherogenesis. Cardiovasc Res 109:24–33

    Article  CAS  PubMed  Google Scholar 

  34. Mäkinen PI, Lappalainen JP, Heinonen SE, Leppänen P, Lähteenvuo MT, Aarnio JV, Heikkilä J, Turunen MP, Ylä-Herttuala S (2010) Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors. Cardiovasc Res 88:530–538

    Article  PubMed  CAS  Google Scholar 

  35. Dai XY, Cai Y, Mao DD, Qi YF, Tang C, Xu Q, Zhu Y, Xu MJ, Wang X (2012) Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor A inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice. J Mol Cell Cardiol 53:509–520

    Article  CAS  PubMed  Google Scholar 

  36. Hashizume M, Mihara M (2012) Blockade of IL-6 and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger receptor induction. Eur J Pharmacol 689:249–254

    Article  CAS  PubMed  Google Scholar 

  37. Yang XF, Yang Y, Lian YT, Wang ZH, Li XW, Cheng LX, Liu JP, Wang YF, Gao X, Liao YH et al (2012) The antibody targeting the E314 peptide of human Kv1.3 pore region serves as a novel, potent and specific channel blocker. PLoS One 7:e36379. doi:10.1371/journal.pone.0036379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang Y, Wang YF, Yang XF, Wang ZH, Lian YT, Yang Y, Li XW, Gao X, Chen J, Shu YW et al (2013) Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res 54:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, Shyue SK, Lee TS (2012) Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 56:691–701

    Article  CAS  PubMed  Google Scholar 

  40. Wang XH, Wang F, You SJ, Cao YJ, Cao LD, Han Q, Liu CF, Hu LF (2013) Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25:2255–2262

    Article  CAS  PubMed  Google Scholar 

  41. Zhao ZZ, Wang Z, Li GH, Wang R, Tan JM, Cao X, Suo R, Jiang ZS (2011) Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp Biol Med (Maywood) 236:169–176

    Article  CAS  Google Scholar 

  42. Van Berkel TJ, Van Eck M, Herijgers N, Fluiter K, Nion S (2000) Scavenger receptor classes a and B. Their roles in atherogenesis and the metabolism of modified LDL and HDL. Ann N Y Acad Sci 902:113–126; discussion 126-127

    Article  PubMed  Google Scholar 

  43. Pepino MY, Kuda O, Samovski D, Abumrad NA (2014) Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr 34:281–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tarhda Z, Semlali O, Kettani A, Moussa A, Abumrad NA, Ibrahimi A (2013) Three dimensional structure prediction of fatty acid binding site on human transmembrane receptor CD36. Bioinform Biol Insights 7:369–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Teupser D, Mueller MA, Koglin J, Wilfert W, Ernst J, von Scheidt W, Steinbeck G, Seidel D, Thiery J (2008) CD36 mRNA expression is increased in CD14+ monocytes of patients with coronary heart disease. Clin Exp Pharmacol Physiol 35:552–556

    Article  CAS  PubMed  Google Scholar 

  46. Piechota M, Banaszewska A, Dudziak J, Slomczynski M, Plewa R (2012) Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J 31:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernández-Real JM, Handberg A, Ortega F, Højlund K, Vendrell J, Ricart W (2009) Circulating soluble CD36 is a novel marker of liver injury in subjects with altered glucose tolerance. J Nutr Biochem 20:477–484

    Article  PubMed  CAS  Google Scholar 

  48. Handberg A, Norberg M, Stenlund H, Hallmans G, Attermann J, Eriksson JW (2010) Soluble CD36 (sCD36) clusters with markers of insulin resistance, and high sCD36 is associated with increased type 2 diabetes risk. J Clin Endocrinol Metab 95:1939–1946

    Article  CAS  PubMed  Google Scholar 

  49. Handberg A, Højlund K, Gastaldelli A, Flyvbjerg A, Dekker JM, Petrie J, Piatti P, Beck-Nielsen H, Investigators RISC (2012) Plasma sCD36 is associated with markers of atherosclerosis, insulin resistance and fatty liver in a nondiabetic healthy population. J Intern Med 271:294–304

    Article  CAS  PubMed  Google Scholar 

  50. Hrboticky N, Draude G, Hapfelmeier G, Lorenz R, Weber PC (1999) Lovastatin decreases the receptor-mediated degradation of acetylated and oxidized LDLs in human blood monocytes during the early stage of differentiation into macrophages. Arterioscler Thromb Vasc Biol 19:1267–1275

    Article  CAS  PubMed  Google Scholar 

  51. Fuhrman B, Koren L, Volkova N, Keidar S, Hayek T, Aviram M (2002) Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis 164:179–185

    Article  CAS  PubMed  Google Scholar 

  52. Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G (2012) CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One 7:e37633. doi:10.1371/journal.pone.0037633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken JJFP, Glatz JFC, Evans RD et al (2017) Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc Res doi. doi:10.1093/cvr/cvx045 [Epub ahead of print]

  54. Mimche PN, Brady LM, Keeton S, Fenne DS, King TP, Quicke KM, Hudson LE, Lamb TJ (2015) Curcumin enhances non-opsonic phagocytosis of Plasmodium falciparum through up-regulation of CD36 surface expression on monocytes/macrophages. PLoS One 10:e0138835. doi:10.1371/journal.pone.0138835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gao D, Pararasa C, Dunston CR, Bailey CJ, Griffiths HR (2012) Palmitate promotes monocyte atherogenicity via de novo ceramidesynthesis. Free Radic Biol Med 53:796–806

    Article  CAS  PubMed  Google Scholar 

  56. Kishimoto Y, Yoshida H, Kondo K (2016) Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Mar Drugs 14. pii: E35. doi: 10.3390/md14020035

  57. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Links between atherosclerotic and periodontal disease. Exp Mol Pathol 100:220–235

    Article  CAS  PubMed  Google Scholar 

  58. Li L, Sawamura T, Renier G (2004) Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res 94:892–901

    Article  CAS  PubMed  Google Scholar 

  59. Choi JS, Bae JY, Kim DS, Li J, Kim JL, Lee YJ, Kang YH (2010) Dietary compound quercitrin dampens VEGF induction and PPARgamma activation in oxidized LDL-exposed murine macrophages: association with scavenger receptor CD36. J Agric Food Chem 58:1333–1341

    Article  CAS  PubMed  Google Scholar 

  60. Tang FT, Cao Y, Wang TQ, Wang LJ, Guo J, Zhou XS, Xu SW, Liu WH, Liu PQ, Huang HQ (2011) Tanshinone IIA attenuates atherosclerosis in ApoE(-/-) mice through down-regulation of scavenger receptor expression. Eur J Pharmacol 650:275–284

    Article  CAS  PubMed  Google Scholar 

  61. Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Ochoa-Herrera J, Perez-Lopez P, Pulido-Moran M, Ramirez-Tortosa MC, Granados-Principal S, Quiles JL, Ramirez-Tortosa CL et al (2012) Squalene ameliorates atherosclerotic lesions through the reduction of CD36 scavenger receptor expression in macrophages. Mol Nutr Food Res 56:733–740

    Article  CAS  PubMed  Google Scholar 

  62. Ogura S, Kakino A, Sato Y, Fujita Y, Iwamoto S, Otsui K, Yoshimoto R, Sawamura T (2009) Lox-1: the multifunctional receptor underlying cardiovascular dysfunction. Circ J 73:1993–1999

    Article  CAS  PubMed  Google Scholar 

  63. Chen M, Inoue K, Narumiya S, Masaki T, Sawamura T (2001) Requirements of basic amino acid residues within the lectin-like domain of LOX-1 for the binding of oxidized low-density lipoprotein. FEBS Lett 499:215–219

    Article  CAS  PubMed  Google Scholar 

  64. Schaeffer DF, Riazy M, Parhar KS, Chen JH, Duronio V, Sawamura T, Steinbrecher UP (2009) LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res 50:1676–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshida H, Kondratenko N, Green S, Steinberg D, Quehenberger O (1998) Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem J 334:9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kume N, Kita T (2001) Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis. Trends Cardiovasc Med 11:22–25

    Article  CAS  PubMed  Google Scholar 

  67. Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, Sawamura T, Masaki T, Hashimoto N, Kita T (1999) Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 99:3110–3117

    Article  CAS  PubMed  Google Scholar 

  68. Inoue K, Arai Y, Kurihara H, Kita T, Sawamura T (2005) Overexpression of lectin-like oxidized low-density lipoprotein receptor-1induces in tramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res 97:176–184

    Article  CAS  PubMed  Google Scholar 

  69. Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, Shmookler Reis RJ, Varughese KI, Sawamura T et al (2015) Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res 107:556–567

    Article  PubMed  Google Scholar 

  70. Ishino S, Mukai T, Kume N, Asano D, Ogawa M, Kuge Y, Minami M, Kita T, Shiomi M, Saji H (2007) Lectin-like oxidized LDL receptor-1 (LOX-1) expression is associated with atherosclerotic plaque instability - analysis in hypercholesterolemic rabbits. Atherosclerosis 195:48–56

    Article  CAS  PubMed  Google Scholar 

  71. Kuge Y, Kume N, Ishino S, Takai N, Ogawa Y, Mukai T, Minami M, Shiomi M, Saji H (2008) Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits. Biol Pharm Bull 31:1475–1482

    Article  CAS  PubMed  Google Scholar 

  72. Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Keshi H, Sakai Y, Fukuoh A, Sakamoto T, Itabe H et al (2001) The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem 276:44222–44228

    Article  CAS  PubMed  Google Scholar 

  73. Perez A, Wright MB, Maugeais C, Braendli-Baiocco A, Okamoto H, Takahashi A, Singer T, Mueller L, Niesor EJ (2010) MARCO, a macrophage scavenger receptor highly expressed in rodents, mediates dalcetrapib-induced uptake of lipids by rat and mouse macrophages. Toxicol in Vitro 24:745–750

    Article  CAS  PubMed  Google Scholar 

  74. Ghosh S (2012) Early steps in reverse cholesterol transport: cholesteryl ester hydrolase and other hydrolases. Curr Opin Endocrinol Diabetes Obes 19:136–141

    Article  CAS  PubMed  Google Scholar 

  75. Kusunoki J, Hansoty DK, Aragane K, Fallon JT, Badimon JJ, Fisher EA (2001) Acyl-CoA: cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 103:2604–2609

    Article  CAS  PubMed  Google Scholar 

  76. Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF, Farese RV Jr (2001) Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang CC, Sakashita N, Ornvold K, Lee O, Chang ET, Dong R, Lin S, Lee CY, Strom SC, Kashyap R et al (2000) Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem 275:28083–28092

    CAS  PubMed  Google Scholar 

  78. Corr EM, Cunningham CC, Dunne A (2016) Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 251:197–205

    Article  CAS  PubMed  Google Scholar 

  79. Cheng B, Wan J, Wang Y, Mei C, Liu W, Ke L, He P (2010) Ghrelin inhibits foam cell formation via simultaneously down-regulating the expression of acyl-coenzyme A:cholesterol acyltransferase 1 and up-regulating adenosine triphosphate-binding cassette transporter A1. Cardiovasc Pathol 19:e159–e166

    Article  CAS  PubMed  Google Scholar 

  80. Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, Miyazaki A, Hirano T (2011) Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 54:2649–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Darsalia V, Larsson M, Nathanson D, Klein T, Nyström T, Patrone C (2015) Glucagon-like receptor 1 agonists and DPP-4 inhibitors: potential therapies for the treatment of stroke. J Cereb Blood Flow Metab 35:718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terasaki M, Nagashima M, Nohtomi K, Kohashi K, Tomoyasu M, Sinmura K, Nogi Y, Katayama Y, Sato K, Itoh F et al (2013) Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin’s actions in nondiabetic and diabeticapolipoprotein E-null mice. PLoS One 8:e70933. doi:10.1371/journal.pone.0070933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ce J, Zhai W, Cheng B, He P, Qi B, Lu H, Zeng Y, Chen X (2013) Insulin induces human acyl-coenzyme A: cholesterol acyltransferase1 gene expression via MAP kinases and CCAAT/enhancer-binding protein α. J Cell Biochem 114:2188–2198

    Article  CAS  Google Scholar 

  84. Hongo S, Watanabe T, Arita S, Kanome T, Kageyama H, Shioda S, Miyazaki A (2009) Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages. Am J Physiol Endocrinol Metab 297:E474–E482

    Article  CAS  PubMed  Google Scholar 

  85. Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S et al (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem 283:33357–33364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson WJ, Jang SY, Bernard DW (2000) Hormone sensitive lipase mRNA in both monocyte and macrophage forms of the human THP-1 cell line. Comp Biochem Physiol B Biochem Mol Biol 126:543–552

    Article  CAS  PubMed  Google Scholar 

  87. Yeaman SJ (2004) Hormone-sensitive lipase—new roles for an old enzyme. Biochem J 379:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Igarashi M, Osuga J, Isshiki M, Sekiya M, Okazaki H, Takase S, Takanashi M, Ohta K, Kumagai M, Nishi M et al (2010) Targeting of neutral cholesterol ester hydrolase to the endoplasmic reticulum via its N-terminal sequence. J Lipid Res 51:274–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Igarashi M, Osuga J, Uozaki H, Sekiya M, Nagashima S, Takahashi M, Takase S, Takanashi M, Li Y, Ohta K et al (2010) The critical role of neutral cholesterol ester hydrolase 1 in cholesterol removal from human macrophages. Circ Res 107:1387–1395

    Article  CAS  PubMed  Google Scholar 

  90. Choy HA, Wang XP, Schotz MC (2003) Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochim Biophys Acta 1634:76–85

    Article  CAS  PubMed  Google Scholar 

  91. Zhao B, Song J, Chow WN, St Clair RW, Rudel LL, Ghosh S (2007) Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 117:2983–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sekiya M, Osuga J, Nagashima S, Ohshiro T, Igarashi M, Okazaki H, Takahashi M, Tazoe F, Wada T, Ohta K et al (2009) Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab 10:219–228

    Article  CAS  PubMed  Google Scholar 

  93. Sekiya M, Osuga J, Igarashi M, Okazaki H, Ishibashi S (2011) The role of neutral cholesterol ester hydrolysis in macrophage foam cells. J Atheroscler Thromb 18:359–364

    Article  CAS  PubMed  Google Scholar 

  94. Sakai K, Igarashi M, Yamamuro D, Ohshiro T, Nagashima S, Takahashi M, Enkhtuvshin B, Sekiya M, Okazaki H, Osuga J et al (2014) Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages. J Lipid Res 55:2033–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Joyce CW, Wagner EM, Basso F, Amar MJ, Freeman LA, Shamburek RD, Knapper CL, Syed J, Wu J, Vaisman BL et al (2006) ABCA1 overexpression in the liver of LDLr-KO mice leads to accumulation of pro atherogenic lipoproteins and enhanced atherosclerosis. J Biol Chem 281:33053–33065

    Article  CAS  PubMed  Google Scholar 

  96. Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L (2008) Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI. J Mol Med (Berl) 86:171–183

    Article  CAS  Google Scholar 

  97. Bennett DJ, Cooke AJ, Edwards AS (2006) Non-steroidal LXR agonists; an emerging therapeutic strategy for the treatment of atherosclerosis. Recent Pat Cardiovasc Drug Discov 1:21–46

    Article  CAS  PubMed  Google Scholar 

  98. Lee SM, Moon J, Cho Y, Chung JH, Shin MJ (2013) Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. Nutr Res 33:136–143

    Article  CAS  PubMed  Google Scholar 

  99. Tang CK, Tang GH, Yi GH, Wang Z, Liu LS, Wan S, Yuan ZH, He XS, Yang JH, Ruan CG et al (2004) Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells. Acta Biochim Biophys Sin Shanghai 36:218–226

    Article  CAS  PubMed  Google Scholar 

  100. Ogura M, Ayaori M, Terao Y, Hisada T, Iizuka M, Takiguchi S, Uto-Kondo H, Yakushiji E, Nakaya K, Sasaki M et al (2011) Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler Thromb Vasc Biol 31:1980–1987

    Article  CAS  PubMed  Google Scholar 

  101. Wang Y, Oram JF (2007) Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase C delta pathway. J Lipid Res 48:1062–1068

    Article  CAS  PubMed  Google Scholar 

  102. Ku CS, Park Y, Coleman SL, Lee J (2012) Unsaturated fatty acids repress expression of ATP binding cassette transporter A1 and G1 in RAW 264.7 macrophages. J Nutr Biochem 23:1271–1276

    Article  CAS  PubMed  Google Scholar 

  103. Yu XH, Jiang HL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Ouyang XP, Lv YC, Jiang ZS, Zhang DW et al (2012) Interleukin-18 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18R/nuclear factor-κB signaling pathway in THP-1 macrophage-derived foam cells. Circ J 76:1780–1791

    Article  CAS  PubMed  Google Scholar 

  104. Rousselle A, Qadri F, Leukel L, Yilmaz R, Fontaine JF, Sihn G, Bader M, Ahluwalia A, Duchene J (2013) CXCL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest 123:1343–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Santamarina-Fojo S, Remaley AT, Neufeld EB, Brewer HB Jr (2001) Regulation and intracellular trafficking of the ABCA1 transporter. J Lipid Res 42:1339–1345

    CAS  PubMed  Google Scholar 

  106. Baldán A, Pei L, Lee R, Tarr P, Tangirala RK, Weinstein MM, Frank J, Li AC, Tontonoz P, Edwards PA (2006) Impaired development of atherosclerosis in hyperlipidemic Ldlr-/- and ApoE-/- mice transplanted with Abcg1-/- bone marrow. Arterioscler Thromb Vasc Biol 26:2301–2307

    Article  PubMed  CAS  Google Scholar 

  107. Meurs I, Lammers B, Zhao Y, Out R, Hildebrand RB, Hoekstra M, Van Berkel TJ, Van Eck M (2012) The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis 221:41–47

    Article  CAS  PubMed  Google Scholar 

  108. Helal O, Berrougui H, Loued S, Khalil A (2013) Extra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages. Br J Nutr 109:1844–1855

    Article  CAS  PubMed  Google Scholar 

  109. Jun HJ, Hoang MH, Yeo SK, Jia Y, Lee SJ (2013) Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorg Med Chem Lett 23:579–583

    Article  CAS  PubMed  Google Scholar 

  110. Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 111:967–981

    Article  CAS  PubMed  Google Scholar 

  111. Zhang W, Yancey PG, Su YR, Babaev VR, Zhang Y, Fazio S, Linton MF (2003) Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 108:2258–2263

    Article  CAS  PubMed  Google Scholar 

  112. Yancey PG, de la Llera-Moya M, Swarnakar S, Monzo P, Klein SM, Connelly MA, Johnson WJ, Williams DL, Rothblat GH (2000) High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J Biol Chem 275:36596–36604

    Article  CAS  PubMed  Google Scholar 

  113. Chen W, Silver DL, Smith JD, Tall AR (2000) Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. J Biol Chem 275:30794–30800

    Article  CAS  PubMed  Google Scholar 

  114. Uto-Kondo H, Ayaori M, Ogura M, Nakaya K, Ito M, Suzuki A, Takiguchi S, Yakushiji E, Terao Y, Ozasa H et al (2010) Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circ Res 106:779–787

    Article  CAS  PubMed  Google Scholar 

  115. Kämmerer I, Ringseis R, Biemann R, Wen G, Eder K (2011) 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages. Lipids Health Dis 10:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Voloshyna I, Hai O, Littlefield MJ, Carsons S, Reiss AB (2013) Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur J Pharmacol 698:299–309

    Article  CAS  PubMed  Google Scholar 

  117. Tang SL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Lv YC, Ouyang XP, Yu XH, Kuang HJ, Jiang ZS et al (2012) PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRα through the IGF-I-mediated signaling pathway. Atherosclerosis 222:344–354

    Article  CAS  PubMed  Google Scholar 

  118. Najafi-Shoushtari SH (2011) MicroRNAs in cardiometabolic disease. Curr Atheroscler Rep 13:202–207

    Article  CAS  PubMed  Google Scholar 

  119. Araldi E, Chamorro-Jorganes A, van Solingen C, Fernandez-Hernando C, Suarez Y (2015) Therapeutic potential of modulating microRNAs in atherosclerotic vascular disease. Curr Vasc Pharmacol 13:291–304

    Article  CAS  PubMed  Google Scholar 

  120. Xu J, Hu G, Lu M, Xiong Y, Li Q, Chang CC, Song B, Chang T, Li B (2013) MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochim Biophys Sin Shanghai 45:953–962

    Article  CAS  PubMed  Google Scholar 

  121. Lv YC, Tang YY, Peng J, Zhao GJ, Yang J, Yao F, Ouyang XP, He PP, Xie W, Tan YL et al (2014) MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis:215–226. doi:10.1016/j.atherosclerosis.2014.07.005

  122. Feng J, Li A, Deng J, Yang Y, Dang L, Ye Y, Li Y, Zhang W (2014) miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis 13:27. doi: 10.1186/1476-511X-13-27

  123. Zhao GJ, Mo ZC, Tang SL, Ouyang XP, He PP, Lv YC, Yao F, Tan YL, Xie W, Shi JF et al (2014) Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis 235:519–525

    Article  CAS  PubMed  Google Scholar 

  124. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, Li Y, Wang JL, Liu XY, Peng J et al (2014) MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 234:54–64

    Article  CAS  PubMed  Google Scholar 

  125. Zhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, Huang W (2015) MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res 336:33–42

    Article  CAS  PubMed  Google Scholar 

  126. Peng XP, Huang L, Liu ZH (2016) miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages. Biochimie 127:79–85

    Article  CAS  PubMed  Google Scholar 

  127. Lan G, Xie W, Li L, Zhang M, Liu D, Tan YL, Cheng HP, Gong D, Huang C, Zheng XL et al (2016) MicroRNA-134 actives lipoprotein lipase-mediated lipid accumulation and inflammatory response by targeting angiopoietin-like 4 in THP-1 macrophages. Biochem Biophys Res Commun 472:410–417

    Article  CAS  PubMed  Google Scholar 

  128. Hu YW, Hu YR, Zhao JY, Li SF, Ma X, Wu SG, Lu JB, Qiu YR, Sha YH, Wang YC et al (2014) An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 9:e94997. doi:10.1371/journal.pone.0094997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Li J, Zhang S (2016) microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2. Biochem Biophys Res Commun 476:218–224

    Article  CAS  PubMed  Google Scholar 

  130. Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY, Zeng A, Zou J, Zhu RF, Han XS et al (2014) Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res 103:100–110

    Article  CAS  PubMed  Google Scholar 

  131. Gong D, Cheng HP, Xie W, Zhang M, Liu D, Lan G, Huang C, Zhao ZW, Chen LY, Yao F et al (2016) Cystathionine γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun 470:107–116

    Article  CAS  PubMed  Google Scholar 

  132. Wang J, Bai X, Song Q, Fan F, Hu Z, Cheng G, Zhang Y (2015) miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int J Mol Sci 16:24965–24982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Meiler S, Baumer Y, Toulmin E, Seng K, Boisvert WA (2015) MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol 35:323–331

    Article  CAS  PubMed  Google Scholar 

  134. Wang D, Yan X, Xia M, Yang Y, Li D, Li X, Song F, Ling W (2014) Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler Thromb Vasc Biol 34(9):1860–1870

    Article  PubMed  CAS  Google Scholar 

  135. Hu YW, Zhao JY, Li SF, Huang JL, Qiu YR, Ma X, Wu SG, Chen ZP, Hu YR, Yang JY et al (2015) RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol 35:87–101

    Article  CAS  PubMed  Google Scholar 

  136. Wang B, He PP, Zeng GF, Zhang T, Ou Yang XP (2017) miR-467b regulates the cholesterol ester formation via targeting ACAT1 gene in RAW 264.7 macrophages. Biochimie 132:38–44

    Article  CAS  PubMed  Google Scholar 

  137. Liu D, Zhang M, Xie W, Lan G, Cheng HP, Gong D, Huang C, Lv YC, Yao F, Tan YL et al (2016) MiR-486 regulates cholesterol efflux by targeting HAT1. Biochem Biophys Res Commun 472:418–424

    Article  CAS  PubMed  Google Scholar 

  138. He PP, Ouyang XP, Tang YY, Liao L, Wang ZB, Lv YC, Tian GP, Zhao GJ, Huang L, Yao F et al (2014) MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie 106:81–90

    Article  CAS  PubMed  Google Scholar 

  139. Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK (2014) Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 237:597–608

    Article  CAS  PubMed  Google Scholar 

  140. Rotllan N, Price N, Pati P, Goedeke L, Fernández-Hernando C (2016) microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis 246:352–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dubland JA, Francis GA (2016) So much cholesterol: the unrecognized importance of smooth muscle cells in atherosclerotic foam cell formation. Curr Opin Lipidol 27:155–161

    Article  CAS  PubMed  Google Scholar 

  142. Ikenaga M, Higaki Y, Saku K, Uehara Y (2016) High-density lipoprotein mimetics: a therapeutic tool for atherosclerotic diseases. J Atheroscler Thromb 23:385–394

    Article  CAS  PubMed  Google Scholar 

  143. Uehara Y, Chiesa G, Saku K (2015) High-density lipoprotein-targeted therapy and apolipoprotein A-I mimetic peptides. Circ J 79:2523–2528

    Article  PubMed  Google Scholar 

  144. Tardy C, Goffinet M, Boubekeur N, Ackermann R, Sy G, Bluteau A, Cholez G, Keyserling C, Lalwani N, Paolini JF et al (2014) CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice. Atherosclerosis 232:110–118

    Article  CAS  PubMed  Google Scholar 

  145. Tardy C, Goffinet M, Boubekeur N, Cholez G, Ackermann R, Sy G, Keyserling C, Lalwani N, Paolini JF, Dasseux JL et al (2015) HDL and CER-001 inverse-dose dependent inhibition of atherosclerotic plaque formation in apoE-/- mice: evidence of ABCA1 down-regulation. PLoS One 10:e0137584. doi:10.1371/journal.pone.0137584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tardif JC, Ballantyne CM, Barter P, Dasseux JL, Fayad ZA, Guertin MC, Kastelein JJ, Keyserling C, Klepp H, Koenig W et al (2014) Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J 35:3277–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kootte RS, Smits LP, van der Valk FM, Dasseux JL, Keyserling CH, Barbaras R, Paolini JF, Santos RD, van Dijk TH, Dallinga-van Thie GM et al (2015) Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J Lipid Res 56:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hovingh GK, Smits LP, Stefanutti C, Soran H, Kwok S, de Graaf J, Gaudet D, Keyserling CH, Klepp H, Frick J et al (2015) The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study. Am Heart J 169:736–742.e1. doi:

  149. Zheng KH, van der Valk FM, Smits LP, Sandberg M, Dasseux JL, Baron R, Barbaras R, Keyserling C, Coolen BF, Nederveen AJ et al (2016) HDL mimetic CER-001 targets atherosclerotic plaques in patients. Atherosclerosis 251:381–388

    Article  CAS  PubMed  Google Scholar 

  150. Andrews J, Janssan A, Nguyen T, Pisaniello AD, Scherer DJ, Kastelein JJ, Merkely B, Nissen SE, Ray K, Schwartz GG et al (2017) Effect of serial infusions of reconstituted high-density lipoprotein (CER-001) on coronary atherosclerosis: rationale and design of the CARAT study. Cardiovasc Diagn Ther 7:45–51

    Article  PubMed  PubMed Central  Google Scholar 

  151. Keyserling CH, Barbaras R, Benghozi R, Dasseux JL (2017) Development of CER-001: preclinical dose selection through to phase I clinical findings. Clin Drug Investig 37:483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Orekhov.

Ethics declarations

Funding

This work was supported by Russian Science Foundation (Grant no. 14-15-00112).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistiakov, D.A., Melnichenko, A.A., Myasoedova, V.A. et al. Mechanisms of foam cell formation in atherosclerosis. J Mol Med 95, 1153–1165 (2017). https://doi.org/10.1007/s00109-017-1575-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1575-8

Keywords

Navigation