Skip to main content
Log in

Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems—PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine—to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as GS that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenblatt M, Kronenberg HM (1989) Parathyroid hormone: physiology, chemistry, biosynthesis, secretion, metabolism, and mode of action. Saunders, Philadelpia

  2. Chung UL, Lanske B, Lee L, Li E, Kronenberg HM (1998) The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA 95:13030–13035

    CAS  PubMed  Google Scholar 

  3. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

    CAS  PubMed  Google Scholar 

  4. Wysolmerski JJ (2008) Parathyroid hormone-related protein. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. ASBMR, Washington, DC, pp 127–133

    Google Scholar 

  5. Mahon MJ, Bonacci TM, Divieti P, Smrcka AV (2006) A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways. Mol Endocrinol 20:136–146

    CAS  PubMed  Google Scholar 

  6. Singh AT, Gilchrist A, Voyno-Yasenetskaya T, Radeff-Huang JM, Stern PA (2005) G alpha12/G alpha13 subunits of heterotrimeric G proteins mediate parathyroid hormone activation of phospholipase D in UMR-106 osteoblastic cells. Endocrinology 146:2171–2175

    CAS  PubMed  Google Scholar 

  7. Ferrari SL, Behar V, Chorev M, Rosenblatt M, Bisello A (1999) Endocytosis of ligand-human parathyroid hormone receptor 1 complexes is protein kinase C-dependent and involves beta-arrestin2. Real-time monitoring by fluorescence microscopy. J Biol Chem 274:29968–29975

    CAS  PubMed  Google Scholar 

  8. Castro M, Dicker F, Vilardaga JP, Krasel C, Bernhardt M, Lohse MJ (2002) Dual regulation of the parathyroid hormone (PTH)/PTH-related peptide receptor signaling by protein kinase C and beta-arrestins. Endocrinology 143:3854–3865

    CAS  PubMed  Google Scholar 

  9. Vilardaga JP, Krasel C, Chauvin S, Bambino T, Lohse MJ, Nissenson RA (2002) Internalization determinants of the parathyroid hormone receptor differentially regulate beta-arrestin/receptor association. J Biol Chem 277:8121–8129

    CAS  PubMed  Google Scholar 

  10. Sneddon WB, Yang Y, Ba J, Harinstein LM, Friedman PA (2007) Extracellular signal-regulated kinase activation by parathyroid hormone in distal tubule cells. Am J Physiol Renal Physiol 292:F1028–F1034

    CAS  PubMed  Google Scholar 

  11. Gesty-Palmer D, Flannery P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, Luttrell LM (2009) A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Trans Med 1:1ra1

    Google Scholar 

  12. Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, Eckhardt AE, Cowan CL, Spurney RF, Luttrell LM, Lefkowitz RJ (2006) Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281:10856–10864

    CAS  PubMed  Google Scholar 

  13. Sneddon WB, Friedman PA (2007) Beta-arrestin-dependent parathyroid hormone-stimulated extracellular signal-regulated kinase activation and parathyroid hormone type 1 receptor internalization. Endocrinology 148:4073–4079

    CAS  PubMed  Google Scholar 

  14. Schipani E, Kruse K, Jüppner H (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100

    CAS  PubMed  Google Scholar 

  15. Bastepe M, Raas-Rothschild A, Silver J, Weissman I, Wientroub S, Jüppner H, Gillis D (2004) A form of Jansen’s metaphyseal chondrodysplasia with limited metabolic and skeletal abnormalities is caused by a novel activating parathyroid hormone (PTH)/PTH-related peptide receptor mutation. J Clin Endocrinol Metab 89:3595–3600

    CAS  PubMed  Google Scholar 

  16. Duchatelet S, Ostergaard E, Cortes D, Lemainque A, Julier C (2005) Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 14:1–5

    CAS  PubMed  Google Scholar 

  17. Karaplis AC, He B, Nguyen MTA, Young ID, Semeraro D, Ozawa H, Amizuka N (1998) Inactivating mutation in the human PTH receptor type I gene in Blomstrand chondrodysplasia. Endocrinology 139:5255–5258

    CAS  PubMed  Google Scholar 

  18. Karperien M, van der Harten HJ, van Schooten R, Farish Sips H, den Hollander NS, Kneppers SL, Nijweide P, Papapoulos SE, Lowik CW (1999) A frame shift mutation in the type I parathyroid hormone (PTH)/PTH related peptide receptor causing Blomstrand lethal osteochondrodysplasia. J Clin Endocrinol Metab 84:3713–3720

    CAS  PubMed  Google Scholar 

  19. Zhang P, Jobert AS, Couvineau A, Silve C (1998) A homozygous inactivating mutationin the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J Clin Endocrinol Metab 83:3365–3368

    CAS  PubMed  Google Scholar 

  20. Tregear GW, Van Rietschoten J, Greene E, Keutmann HT, Niall HD, Reit B, Parsons JA, Potts JT Jr (1973) Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 93:1349–1353

    CAS  PubMed  Google Scholar 

  21. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    CAS  PubMed  Google Scholar 

  22. Martin TJ, Quinn JM, Gillespie MT, Ng KW, Karsdal MA, Sims NA (2006) Mechanisms involved in skeletal anabolic therapies. Ann N Y Acad Sci 1068:458–470

    CAS  PubMed  Google Scholar 

  23. Cranney A, Papaioannou A, Zytaruk N, Hanley D, Adachi J, Goltzman D, Murray T, Hodsman A (2006) Parathyroid hormone for the treatment of osteoporosis: a systematic review. Can Med Assoc J 175:52–59

    Google Scholar 

  24. Tashjian AH Jr, Gagel RF (2006) Teriparatide [human PTH(1–34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res 21:354–365

    CAS  PubMed  Google Scholar 

  25. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916

    CAS  PubMed  Google Scholar 

  26. Shoback D (2007) Update in osteoporosis and metabolic bone disorders. J Clin Endocrinol Metab 92:747–753

    CAS  PubMed  Google Scholar 

  27. Miller PD, Bilezikian JP, Diaz-Curiel M, Chen P, Marin F, Krege JH, Wong M, Marcus R (2007) Occurrence of hypercalciuria in patients with osteoporosis treated with teriparatide. Clin Endocrinol Metab 92:3535–3541

    CAS  Google Scholar 

  28. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH (2007) Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int 18:59–68

    CAS  PubMed  Google Scholar 

  29. Antoniucci DM, Sellmeyer DE, Bilezikian JP, Palermo L, Ensrud KE, Greenspan SL, Black DM (2007) Elevations in serum and urinary calcium with parathyroid hormone (1–84) with and without alendronate for osteoporosis. J Clin Endocrinol Metab 92:942–947

    CAS  PubMed  Google Scholar 

  30. Gensure RC, Gardella TJ, Juppner H (2005) Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 328:666–678

    CAS  PubMed  Google Scholar 

  31. Castro M, Nikolaev VO, Palm D, Lohse MJ, Vilardaga JP (2005) Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci USA 102:16084–16089

    CAS  PubMed  Google Scholar 

  32. Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 105:5034–5039

    CAS  PubMed  Google Scholar 

  33. Barbier JR, Gardella TJ, Dean T, MacLean S, Potetinova Z, Whitfield JF, Willick GE (2005) Backbone-methylated analogues of the principle receptor binding region of human parathyroid hormone. Evidence for binding to both the N-terminal extracellular domain and extracellular loop region. J Biol Chem 280:23771–23777

    CAS  PubMed  Google Scholar 

  34. Dean T, Khatri A, Potetinova Z, Willick GE, Gardella TJ (2006) Role of amino acid side chains in region 17–31 of parathyroid hormone (PTH) in binding to the PTH receptor. J Biol Chem 281:32485–32495

    CAS  PubMed  Google Scholar 

  35. Wittelsberger A, Corich M, Thomas BE, Lee BK, Barazza A, Czodrowski P, Mierke DF, Chorev M, Rosenblatt M (2006) The mid-region of parathyroid hormone (1–34) serves as a functional docking domain in receptor activation. Biochemistry 45:2027–2034

    CAS  PubMed  Google Scholar 

  36. Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 262:1416–1419

    CAS  PubMed  Google Scholar 

  37. Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR (1996) Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383:347–350

    CAS  PubMed  Google Scholar 

  38. Sheikh SP, Vilardarga JP, Baranski TJ, Lichtarge O, Iiri T, Meng EC, Nissenson RA, Bourne HR (1999) Similar structures and shared switch mechanisms of the beta2-adrenoceptor and the parathyroid hormone receptor. Zn(II) bridges between helices III and VI block activation. J Biol Chem 274:17033–17041

    CAS  PubMed  Google Scholar 

  39. Vilardaga JP, Frank M, Krasel C, Dees C, Nissenson RA, Lohse MJ (2001) Differential conformational requirements for activation of G proteins and the regulatory proteins arrestin and G protein-coupled receptor kinase in the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein. J Biol Chem 276:33435–33443

    CAS  PubMed  Google Scholar 

  40. Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401

    CAS  PubMed  Google Scholar 

  41. Kenakin TP (2007) Pharmacological onomastics: what’s in a name? Br J Pharmacol 151:851–859

    Google Scholar 

  42. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    CAS  PubMed  Google Scholar 

  43. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    CAS  PubMed  Google Scholar 

  44. Okazaki M, Ferrandon S, Vilardaga JP, Bouxsein ML, Potts JT Jr, Gardella TJ (2008) Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc Natl Acad Sci USA 105:16525–16530

    CAS  PubMed  Google Scholar 

  45. Nikolaev VO, Hoffmann C, Bunemann M, Lohse MJ, Vilardaga JP (2006) Molecular basis of partial agonism at the neurotransmitter alpha2A-adrenergic receptor and Gi-protein heterotrimer. J Biol Chem 281:24506–24511

    CAS  PubMed  Google Scholar 

  46. Vilardaga JP, Steinmeyer R, Harms GS, Lohse MJ (2005) Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol 1:25–28

    CAS  PubMed  Google Scholar 

  47. Kelly E, Bailey CP, Henderson G (2007) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153:S379–S388

    Google Scholar 

  48. Dean T, Linglart A, Mahon MJ, Bastepe M, Juppner H, Potts JT Jr, Gardella TJ (2006) Mechanisms of ligand binding to the PTH/PTHrp receptor: selectivity of a modified PTH(1–15) radioligand for G{Alpha}S-coupled receptor conformations. Mol Endocrinol 20:931–942

    CAS  PubMed  Google Scholar 

  49. Dean T, Vilardaga JP, Potts JT Jr, Gardella TJ (2008) Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol 22:156–166

    CAS  PubMed  Google Scholar 

  50. De Lean A, Stadel J, Lefkowitz R (1980) A Ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  51. Hoare SR, Sullivan SK, Pahuja A, Ling N, Crowe PD, Grigoriadis DE (2003) Conformational states of the corticotropin releasing factor 1 (CRF1) receptor: detection, and pharmacological evaluation by peptide ligands. Peptides 24:1881–1897

    CAS  PubMed  Google Scholar 

  52. Hoare SR, Sullivan SK, Schwarz DA, Ling N, Vale WW, Crowe PD, Grigoriadis DE (2004) Ligand affinity for amino-terminal and juxtamembrane domains of the corticotropin releasing factor type I receptor: regulation by G-protein and nonpeptide antagonists. Biochemistry 43:3996–4011

    CAS  PubMed  Google Scholar 

  53. Berlot CH (2002) A highly effective dominant negative alpha s construct containing mutations that affect distinct functions inhibits multiple Gs-coupled receptor signaling pathways. J Biol Chem 277:21080–21085

    CAS  PubMed  Google Scholar 

  54. Okazaki M, Nagai S, Dean T, Potts JJ, Gardella T (2007) Analysis of PTH-PTH receptor interaction mechanisms using a new, long-acting PTH(1–28) analog reveals selective binding to distinct PTH receptor conformations and biological consequences in vivo. J Bone Min Res 22 Suppl, Abstract 1190

  55. Nagai S, Okazaki M, Potts JJ, Jüppner H, Gardella T (2007) Dissection of the mechanisms of PTH-mediated Inhibition of sodium-dependent phosphate transport using a long-acting PTH(1-28) analog. J Bone Min Res 22 Suppl, Abstract 1189

  56. Kostenuik PJ, Ferrari S, Pierroz D, Bouxsein M, Morony S, Warmington KS, Adamu S, Geng Z, Grisanti M, Shalhoub V, Martin S, Biddlecome G, Shimamoto G, Boone T, Shen V, Lacey D (2007) Infrequent delivery of a long-acting PTH-Fc fusion protein has potent anabolic effects on cortical and cancellous bone. J Bone Miner Res 22:1534–1547

    CAS  PubMed  Google Scholar 

  57. Li X, Liu H, Qin L, Tamasi J, Bergenstock M, Shapses S, Feyen JH, Notterman DA, Partridge NC (2007) Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem 282:33086–33097

    CAS  PubMed  Google Scholar 

  58. Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC (2007) Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res 22:1492–1501

    PubMed  Google Scholar 

  59. Winer KK, Ko CW, Reynolds JC, Dowdy K, Keil M, Peterson D, Gerber LH, McGarvey C, Cutler GB Jr (2003) Long-term treatment of hypoparathyroidism: a randomized controlled study comparing parathyroid hormone-(1–34) versus calcitriol and calcium. J Clin Endocrinol Metab 88:4214–4220

    CAS  PubMed  Google Scholar 

  60. Mittelman SD, Hendy GN, Fefferman RA, Canaff L, Mosesova I, Cole DE, Burkett L, Geffner ME (2006) A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metab 91:2474–2479

    CAS  PubMed  Google Scholar 

  61. Heck M, Hofmann KP (2001) Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J Biol Chem 276:10000–10009

    CAS  PubMed  Google Scholar 

  62. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    CAS  PubMed  Google Scholar 

  63. Roberts DJ, Waelbroeck M (2004) G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction? Biochem Pharmacol 68:799–806

    CAS  PubMed  Google Scholar 

  64. Rodbell M (1997) The complex regulation of receptor-coupled G-proteins. Adv Enzyme Regul 37:427–435

    CAS  PubMed  Google Scholar 

  65. Waelbroeck M (2001) Activation of guanosine 5’-[gamma-(35)S]thio-triphosphate binding through M(1) muscarinic receptors in transfected Chinese hamster ovary cell membranes; 1. Mathematical analysis of catalytic G protein activation. Mol Pharmacol 59:875–885

    CAS  PubMed  Google Scholar 

  66. Shenoy SK, Barak LS, Xiao K, Ahn S, Berthouze M, Shukla AK, Luttrell LM, Lefkowitz RJ (2007) Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem 282:29549–29562

    CAS  PubMed  Google Scholar 

  67. Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res 99:570–582

    CAS  PubMed  Google Scholar 

  68. Hanyaloglu AC, von Zastrow M (2007) Regulation of GPCRs by membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568

    Google Scholar 

  69. Slessareva JE, Dohlman HG (2006) G protein signaling in yeast: new components, new connections, new compartments. Science 314:1412–1413

    CAS  PubMed  Google Scholar 

  70. Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ (2008) Beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 283:5669–5676

    CAS  PubMed  Google Scholar 

  71. Takasu H, Guo J, Bringhurst F (1999) Dual signaling and ligand selectivity of the human PTH/PTHrP receptor. J Bone Miner Res 14:11–20

    CAS  PubMed  Google Scholar 

  72. Yang D, Singh R, Divieti P, Guo J, Bouxsein ML, Bringhurst FR (2007) Contributions of parathyroid hormone (PTH)/PTH-related peptide receptor signaling pathways to the anabolic effect of PTH on bone. Bone 40:1453–1461

    CAS  PubMed  Google Scholar 

  73. Bisello A, Chorev M, Rosenblatt M, Monticelli L, Mierke DF, Ferrari SL (2002) Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. J Biol Chem 277:38524–38530

    CAS  PubMed  Google Scholar 

  74. Shimizu N, Dean T, Tsang JC, Khatri A, Potts JT Jr, Gardella TJ (2005) Novel parathyroid hormone (PTH) antagonists that bind to the juxtamembrane portion of the PTH/PTH-related protein receptor. J Biol Chem 280:1797–1807

    CAS  PubMed  Google Scholar 

  75. Sneddon WB, Magyar CE, Willick GE, Syme CA, Galbiati F, Bisello A, Friedman PA (2004) Ligand-selective dissociation of activation and internalization of the parathyroid hormone (PTH) receptor: conditional efficacy of PTH peptide fragments. Endocrinology 145:2815–2823

    CAS  PubMed  Google Scholar 

  76. Sneddon WB, Syme CA, Bisello A, Magyar CE, Rochdi MD, Parent JL, Weinman EJ, Abou-Samra AB, Friedman PA (2003) Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J Biol Chem 278:43787–43796

    CAS  PubMed  Google Scholar 

  77. Wheeler D, Sneddon WB, Wang B, Friedman PA, Romero G (2007) NHERF-1 and the cytoskeleton regulate the traffic and membrane dynamics of G protein-coupled receptors. J Biol Chem 282:25076–25087

    CAS  PubMed  Google Scholar 

  78. Wheeler D, Garrido JL, Bisello A, Kim YK, Friedman PA, Romero G (2008) Regulation of PTH1R dynamics, traffic, and signaling by the Na+/H+ exchanger regulatory factor-1 (NHERF1) in rat osteosarcoma ROS 17/2.8 cells. Mol Endocrinol 22:1163-1170

    Google Scholar 

  79. Bisello A, Horwitz MJ, Stewart AF (2004) Parathyroid hormone-related protein: an essential physiological regulator of adult bone mass. Endocrinology 145:3551–3553

    CAS  PubMed  Google Scholar 

  80. Horwitz MJ, Tedesco MB, Gundberg C, Garcia-Ocana A, Stewart AF (2003) Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 88:569–575

    CAS  PubMed  Google Scholar 

  81. Horwitz MJ, Tedesco MB, Sereika SM, Syed MA, Garcia-Ocana A, Bisello A, Hollis BW, Rosen CJ, Wysolmerski JJ, Dann P, Gundberg C, Stewart AF (2005) Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1, 25(OH)(2)vitamin D. J Bone Miner Res 20:1792–1803

    CAS  PubMed  Google Scholar 

  82. Horwitz MJ, Tedesco MB, Sereika SM, Garcia-Ocana A, Bisello A, Hollis BW, Gundberg C, Stewart AF (2006) Safety and tolerability of subcutaneous PTHrP(1–36) in healthy human volunteers: a dose escalation study. Osteoporos Int 17:225–230

    CAS  PubMed  Google Scholar 

  83. Vilardaga JP, Bunemann M, Feinstein TN, Lambert N, Nikolaev VO, Engelhardt S, Lohse MJ, Hoffmann C (2009) GPCR and G proteins: drug efficacy and activation in live cells. Mol Endocrinol 23:590–599

    CAS  PubMed  Google Scholar 

  84. Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bunemann M (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29:159–165

    CAS  PubMed  Google Scholar 

  85. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga JP (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5:734–742

    CAS  PubMed  Google Scholar 

  86. Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21:807–812

    CAS  PubMed  Google Scholar 

  87. Tawfeek HA, Abou-Samra AB (2004) Important role for the V-type H(+)-ATPase and the Golgi apparatus in the recycling of PTH/PTHrP receptor. Am J Physiol Endocrinol Metab 286:E704–E710

    CAS  PubMed  Google Scholar 

  88. Syme CA, Friedman PA, Bisello A (2005) Parathyroid hormone receptor trafficking contributes to the activation of extracellular signal-regulated kinases but is not required for regulation of cAMP signaling. J Biol Chem 280:11281–11288

    CAS  PubMed  Google Scholar 

  89. Romero G, Sneddon WB, Yang Y, Wheeler D, Blair HC, Friedman PA (2010) Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-Catenin signaling and osteoclastogenesis. J Biol Chem 285:14756–14763

    CAS  PubMed  Google Scholar 

  90. Choi SC, Han JK (2005) Rap2 is required for Wnt/beta-catenin signaling pathway in Xenopus early development. EMBO J 24:985–996

    CAS  PubMed  Google Scholar 

  91. Capelluto DG, Kutateladze TG, Habas R, Finkielstein CV, He X, Overduin M (2002) The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 419:726–729

    CAS  PubMed  Google Scholar 

  92. Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T (2007) Association of dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev Cell 12:129–141

    CAS  PubMed  Google Scholar 

  93. Huang Z, Chen Y, Nissenson RA (1995) The cytoplasmic tail of the G-protein-coupled receptor for parathyroid hormone and parathyroid hormone-related protein contains positive and negative signals for endocytosis. J Biol Chem 270:151–156

    CAS  PubMed  Google Scholar 

  94. Mahon MJ, Shimada M (2005) Calmodulin interacts with the cytoplasmic tails of the parathyroid hormone 1 receptor and a sub-set of class b G-protein coupled receptors. FEBS Lett 579:803–807

    CAS  PubMed  Google Scholar 

  95. Mahon MJ (2009) The parathyroid hormone 1 receptor directly binds to the FERM domain of ezrin, an interaction that supports apical receptor localization and signaling in LLC-PK1 cells. Mol Endocrinol 23:1691–1701

    CAS  PubMed  Google Scholar 

  96. Sugai M, Saito M, Sukegawa I, Katsushima Y, Kinouchi Y, Nakahata N, Shimosegawa T, Yanagisawa T, Sukegawa J (2003) PTH/PTH-related protein receptor interacts directly with Tctex-1 through its COOH terminus. Biochem Biophys Res Commun 311:24–31

    CAS  PubMed  Google Scholar 

  97. Umbhauer M, Djiane A, Goisset C, Penzo-Mendez A, Riou JF, Boucaut JC, Shi DL (2000) The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. EMBO J 19:4944–4954

    CAS  PubMed  Google Scholar 

  98. Johnston CA, Kimple AJ, Giguere PM, Siderovski DP (2008) Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gß1γ2. Structure 16:1086–1094

    CAS  PubMed  Google Scholar 

  99. Marchese A, George SR, Kolakowski LF Jr, Lynch KR, O'Dowd BF (1999) Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology. Trends Pharmacol Sci 20:370–375

    CAS  PubMed  Google Scholar 

  100. Tazawa H, Takahashi S, Zilliacus J (2003) Interaction of the parathyroid hormone receptor with the 14-3-3 protein. Biochim Biophys Acta 1620:32–38

    CAS  PubMed  Google Scholar 

  101. Miedlich SU, Abou-Samra AB (2008) Eliminating phosphorylation sites of the parathyroid hormone receptor type 1 differentially affects stimulation of phospholipase C and receptor internalization. Am J Physiol Endocrinol Metab 295:E665–E671

    CAS  PubMed  Google Scholar 

  102. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111

    CAS  PubMed  Google Scholar 

  103. Trejo J (2005) Internal PDZ ligands: novel endocytic recycling motifs for G protein-coupled receptors. Mol Pharmacol 67:1388–1390

    CAS  PubMed  Google Scholar 

  104. Gage RM, Matveeva EA, Whiteheart SW, von Zastrow M (2005) Type I PDZ ligands are sufficient to promote rapid recycling of G protein-coupled receptors independent of binding to N-ethylmaleimide-sensitive factor. J Biol Chem 280:3305–3313

    CAS  PubMed  Google Scholar 

  105. Blind E, Bambino T, Huang Z, Bliziotes M, Nissenson RA (1996) Phosphorylation of the cytoplasmic tail of the PTH/PTHrP receptor. J Bone Miner Res 11:578–586

    CAS  PubMed  Google Scholar 

  106. Blind E, Bambino T, Nissenson RA (1995) Agonist-stimulated phosphorylation of the G protein-coupled receptor for parathyroid hormone (PTH) and PTH-related protein. Endocrinology 136:4271–4277

    CAS  PubMed  Google Scholar 

  107. Malecz N, Bambino T, Bencsik M, Nissenson RA (1998) Identification of phosphorylation sites in the G protein-coupled receptor for parathyroid hormone. Receptor phosphorylation is not required for agonist-induced internalization. Mol Endocrinol 12:1846–1856

    CAS  PubMed  Google Scholar 

  108. Dicker F, Quitterer U, Winstel R, Honold K, Lohse MJ (1999) Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein-coupled receptor kinases. Proc Natl Acad Sci USA 96:5476–5481

    CAS  PubMed  Google Scholar 

  109. Tawfeek HA, Qian F, Abou-Samra AB (2002) Phosphorylation of the receptor for PTH and PTHrP is required for internalization and regulates receptor signaling. Mol Endocrinol 16:1–13

    CAS  PubMed  Google Scholar 

  110. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77

    CAS  PubMed  Google Scholar 

  111. Mahon MJ, Donowitz M, Yun CC, Segre GV (2002) Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417:858–861

    CAS  PubMed  Google Scholar 

  112. Mahon MJ, Segre GV (2004) Stimulation by parathyroid hormone of a NHERF-1-assembled complex consisting of the parathyroid hormone I receptor, PLCß, and actin increases intracellular calcium in opossum kidney cells. J Biol Chem 279:23550–23558

    CAS  PubMed  Google Scholar 

  113. Pribanic SGS, Bacic D, Madjdpour C, Hernando N, Sorribas V, Gantenbein A, Biber J, Murer H (2003) Interactions of MAP17 with the NaPi-IIa/PDZK1 protein complex in renal proximal tubular cells. Am J Physiol Renal Physiol 285:F784–F791

    CAS  PubMed  Google Scholar 

  114. Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ (2002) Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci USA 99:11470–11475

    CAS  PubMed  Google Scholar 

  115. Karim Z, Gerard B, Bakouh N, Alili R, Leroy C, Beck L, Silve C, Planelles G, Urena-Torres P, Grandchamp B, Friedlander G, Prie D (2008) NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med 359:1128–1135

    CAS  PubMed  Google Scholar 

  116. Wang B, Ardura JA, Romero G, Yand Y, Hall RA, Friedman PA (2010) Na/H exchanger regulatory factors control PTH receptor signaling by facilitating differential activation of Gα subunits. J Biol Chem (in press)

  117. Wang B, Yang Y, Abou-Samra AB, Friedman PA (2009) NHERF1 regulates parathyroid hormone receptor desensitization; interference with ß-arrestin binding. Mol Pharmacol 75:1189–1197

    CAS  PubMed  Google Scholar 

  118. Ediger TR, Park SE, Katzenellenbogen BS (2002) Estrogen receptor inducibility of the human Na+/H+ exchanger regulatory factor/ezrin-radixin-moesin binding protein 50 (NHE-RF/EBP50) gene involving multiple half-estrogen response elements. Mol Endocrinol 16:1828–1839

    CAS  PubMed  Google Scholar 

  119. Ediger TR, Kraus WL, Weinman EJ, Katzenellenbogen BS (1999) Estrogen receptor regulation of the Na+/H+ exchange regulatory factor. Endocrinology 140:2976–2982

    CAS  PubMed  Google Scholar 

  120. Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    CAS  PubMed  Google Scholar 

  121. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    CAS  PubMed  Google Scholar 

  122. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    CAS  PubMed  Google Scholar 

  123. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ (2003) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301:1391–1394

    CAS  PubMed  Google Scholar 

  124. Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD, Lefkowitz RJ (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298:834–836

    CAS  PubMed  Google Scholar 

  125. Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172

    PubMed  Google Scholar 

Download references

Acknowledgments

Original work described was supported by the National Institutes of Health grants DK087688 (J.-P.V.), DK69998 (P.A.F.), and DK11794 (T.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Vilardaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilardaga, JP., Romero, G., Friedman, P.A. et al. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell. Mol. Life Sci. 68, 1–13 (2011). https://doi.org/10.1007/s00018-010-0465-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0465-9

Keywords

Navigation