Skip to main content
Log in

Glucocorticoids suppress cystathionine gamma-lyase expression and H2S production in lipopolysaccharide-treated macrophages

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) plays an important role in inflammation. We showed that macrophages expressed the H2S-forming enzyme cystathionine gamma-lyase (CSE) and produced H2S. Lipopolysaccharide (LPS) stimulated the CSE expression and H2S production rate. l-cysteine reduced LPS-induced nitric oxide (NO) production. CSE inhibitor blocked the inhibitory effect of l-cysteine. CSE knockdown increased, whereas CSE overexpression decreased LPS-induced NO production. Dexamethasone suppressed LPS-induced CSE expression and the H2S production rate as well as NO production. l-arginine increased, whereas NG-nitro-l-arginine methyl ester (l-NAME) decreased LPS-induced CSE expression and H2S production. Dexamethasone plus l-NAME significantly decreased LPS-induced CSE expression and H2S production compared to l-NAME. Our results suggest that macrophages are one of the H2S producing sources. H2S might exert anti-inflammatory effects by inhibiting NO production. Dexamethasone may directly inhibit CSE expression and H2S production, besides the NO-dependent way. Inhibition of H2S and NO production may be a mechanism by which glucocorticoids coordinate the balance between pro- and anti-inflammatory mediators during inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

H2S:

Hydrogen sulfide

NO:

Nitric oxide

CO:

Carbon monoxide

CSE:

Cystathionine gamma-lyase

CBS:

Cystathionine β-synthetase

fMLP:

Formyl-methionyl-leucyl-phenylalanine

TNF-α:

Tumor necrosis factor-α

GCs:

Glucocorticoids

GR:

Glucocorticoid receptor

MIF:

Migration inhibitory factor

LPS:

Lipopolysaccharide

IL-1:

Interleukin-1

IL-6:

Interleukin-6

MTT:

3-[4, 5-Dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide

PAG:

dl-propargylglycine

l-NAME:

NG-nitro-l-arginine methyl ester

iNOS:

Inducible nitric oxide synthase

CD-FBS:

Charcoal-stripped FBS

PLP:

Pyridoxal-5′-phosphate

siRNA:

Interfering RNA

RAW-EGFP-mCSE:

CSE-overexpression RAW264.7 cell lines

RAW-mCSE siRNA:

CSE-knockdown RAW264.7 cell lines

TBST:

Tris-buffered saline/Tween 20

References

  1. Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611

    Article  CAS  PubMed  Google Scholar 

  2. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  CAS  PubMed  Google Scholar 

  3. Bhatia M (2005) Hydrogen sulfide as a vasodilator. IUBMB Life 57:603–606

    Article  CAS  PubMed  Google Scholar 

  4. Qingyou Z, Junbao D, Weijin Z, Hui Y, Chaoshu T, Chunyu Z (2004) Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 317:30–37

    Article  PubMed  Google Scholar 

  5. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. Faseb J 19:1196–1198

    CAS  PubMed  Google Scholar 

  7. Hui Y, Du J, Tang C, Bin G, Jiang H (2003) Changes in arterial hydrogen sulfide (H(2)S) content during septic shock and endotoxin shock in rats. J Infect 47:155–160

    Article  PubMed  Google Scholar 

  8. Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M (2007) Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 81:1322–1332

    Article  CAS  PubMed  Google Scholar 

  9. Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498–505

    Article  CAS  PubMed  Google Scholar 

  10. Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. Faseb J 19:623–625

    CAS  PubMed  Google Scholar 

  11. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768

    Article  CAS  PubMed  Google Scholar 

  12. Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, Orlandi S, Zanardo R, Renga B, Di Sante M, Morelli A, Cirino G, Wallace JL (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129:1210–1224

    Article  CAS  PubMed  Google Scholar 

  13. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120

    Article  CAS  PubMed  Google Scholar 

  14. Mariggio MA, Pettini F, Fumarulo R (1997) Sulfide influence onpolymorphonuclear functions: a possible role for Ca2+ involvement. Immunopharmacol Immunotoxicol 19:393–404

    Article  CAS  PubMed  Google Scholar 

  15. Mariggio MA, Minunno V, Riccardi S, Santacroce R, De Rinaldis P, Fumarulo R (1998) Sulfide enhancement of PMN apoptosis. Immunopharmacol Immunotoxicol 20:399–408

    Article  CAS  PubMed  Google Scholar 

  16. Hu LF, Wong PT, Moore PK, Bian JS (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100:1121–1128

    Article  CAS  PubMed  Google Scholar 

  17. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 94:557–572

    CAS  Google Scholar 

  18. Pitzalis C, Pipitone N, Perretti M (2002) Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann N Y Acad Sci 966:108–118

    Article  CAS  PubMed  Google Scholar 

  19. Tuckermann JP, Kleiman A, McPherson KG, Reichardt HM (2005) Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 42:71–104

    Article  CAS  PubMed  Google Scholar 

  20. Van Molle W, Libert C (2005) How glucocorticoids control their own strength and the balance between pro- and anti-inflammatory mediators. Eur J Immunol 35:3396–3399

    Article  PubMed  Google Scholar 

  21. Wilckens T, De Rijk R (1997) Glucocorticoids and immune function: unknown dimensions and new frontiers. Immunol Today 18:418–424

    Article  CAS  PubMed  Google Scholar 

  22. Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1996) Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J Immunol 157:1638–1644

    CAS  PubMed  Google Scholar 

  23. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377:68–71

    Article  CAS  PubMed  Google Scholar 

  24. Meagher LC, Cousin JM, Seckl JR, Haslett C (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 156:4422–4428

    CAS  PubMed  Google Scholar 

  25. Sivertson KL, Seeds MC, Long DL, Peachman KK, Bass DA (2007) The differential effect of dexamethasone on granulocyte apoptosis involves stabilization of Mcl-1L in neutrophils but not in eosinophils. Cell Immunol 246:34–45

    Article  CAS  PubMed  Google Scholar 

  26. Liles WC, Dale DC, Klebanoff SJ (1995) Glucocorticoids inhibit apoptosis of human neutrophils. Blood 86:3181–3188

    CAS  PubMed  Google Scholar 

  27. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  28. Ravasi T, Wells C, Forest A, Underhill DM, Wainwright BJ, Aderem A, Grimmond S, Hume DA (2002) Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immunol 168:44–50

    CAS  PubMed  Google Scholar 

  29. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119

    Article  CAS  PubMed  Google Scholar 

  30. Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I (2003) Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation. J Endocrinol 178:29–36

    Article  CAS  PubMed  Google Scholar 

  31. Yeager MP, Pioli PA, Wardwell K, Beach ML, Martel P, Lee HK, Rassias AJ, Guyre PM (2008) In vivo exposure to high or low cortisol has biphasic effects on inflammatory response pathways of human monocytes. Anesth Analg 107:1726–1734

    Article  CAS  PubMed  Google Scholar 

  32. Yona S, Gordon S (2007) Inflammation: glucocorticoids turn the monocyte switch. Immunol Cell Biol 85:81–82

    Article  PubMed  Google Scholar 

  33. Li L, Whiteman M, Moore PK (2009) Dexamethasone inhibits lipopolysacharide-induced hydrogen sulfide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med 13:2684–2692

    Article  PubMed  Google Scholar 

  34. Lei H, Ju DW, Yu Y, Tao Q, Chen G, Gu S, Hamada H, Cao X (2000) Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophage colony-stimulating factor and interferon-gamma. Gene Ther 7:707–713

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  36. Jeroschewski P, Steuckart C, Kuhl M (1996) An amperometric micro-sensor for the determination of H2S in aquatic environments. Anal Chem 68:4351–4357

    Article  CAS  Google Scholar 

  37. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51

    Article  CAS  PubMed  Google Scholar 

  38. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA 104:17977–17982

    Article  CAS  PubMed  Google Scholar 

  39. Tapley D, Buettner G, Shick J (1999) Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol Bull 196:52–56

    Article  CAS  Google Scholar 

  40. Hsu DZ, Wang ST, Deng JF, Liu MY (2005) Epinephrine protects against severe acute gastric bleeding in rats: role of nitric oxide and glutathione. Shock 23:253–257

    CAS  PubMed  Google Scholar 

  41. Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123

    Article  CAS  PubMed  Google Scholar 

  42. Twentyman PR, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56:279–285

    CAS  PubMed  Google Scholar 

  43. Korhonen R, Lahti A, Hamalainen M, Kankaanranta H, Moilanen E (2002) Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Mol Pharmacol 62:698–704

    Article  CAS  PubMed  Google Scholar 

  44. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    CAS  PubMed  Google Scholar 

  45. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19

    Article  CAS  PubMed  Google Scholar 

  46. Bhatia M (2005) Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 145:141–144

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Zhi L, Moochhala SM, Moore PK, Bhatia M (2007) Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J Leukoc Biol 82:894–905

    Article  CAS  PubMed  Google Scholar 

  48. Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47:103–113

    Article  CAS  PubMed  Google Scholar 

  49. Moilanen E, Whittle BJR, Moncada S (1999) Nitric oxide as a factor in inflammation. In: Gallin JI, Snyderman R (ed) Inflammation: principles and clinical correlations. Lippincott Williams & Wilkins, Philadelphia, pp 787–800

  50. Zhong GZ, Chen FR, Cheng YQ, Tang CS, Du JD (2003) The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens 21:1879–1885

    Article  CAS  PubMed  Google Scholar 

  51. Anuar F, Whiteman M, Siau JL, Kwong SE, Bhatia M, Moore PK (2006) Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat. Br J Pharmacol 147:966–974

    Article  CAS  PubMed  Google Scholar 

  52. Walker G, Pfeilschifter J, Kunz D (1997) Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-gamma-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation. J Biol Chem 272:16679–16687

    Article  CAS  PubMed  Google Scholar 

  53. Wallace JL (2007) Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci 28:501–505

    Article  CAS  PubMed  Google Scholar 

  54. Cadepond F, Ulmann A, Baulieu EE (1997) RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med 48:129–156

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi R, Wada H, Ito K, Adcock IM (2004) Effects of glucocorticoids on gene transcription. Eur J Pharmacol 500:51–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. I.Ishii, Gunma University Graduate School of Medicine, Gunma, Japan, for his gift of pCSE-PGL3 plasmid. This work was supported by the National Natural Science Foundation of China, grant nos. 30670815 and 30770846, and the Science and Technology Commission of Shanghai Municipals (09XD1405600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ni.

Additional information

X.-Y. Zhu and S.-J. Liu contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XY., Liu, SJ., Liu, YJ. et al. Glucocorticoids suppress cystathionine gamma-lyase expression and H2S production in lipopolysaccharide-treated macrophages. Cell. Mol. Life Sci. 67, 1119–1132 (2010). https://doi.org/10.1007/s00018-009-0250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0250-9

Keywords

Navigation