Skip to main content

Advertisement

Log in

Subtypes of functional α1-adrenoceptor

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In this review, subtypes of functional α1-adrenoceptor are discussed. These are cell membrane receptors, belonging to the seven-transmembrane-spanning G-protein-linked family of receptors, which respond to the physiological agonist noradrenaline. α1-Adrenoceptors can be divided into α1A-, α1B- and α1D-adrenoceptors, all of which mediate contractile responses involving Gq/11 and inositol phosphate turnover. A fourth α1-adrenoceptor, the α1L-, represents a functional phenotype of the α1A-adrenoceptor. α1-Adrenoceptor subtype knock-out mice have refined our knowledge of the functions of α-adrenoceptor subtypes, particuarly as subtype-selective agonists and antagonists are not available for all subtypes. α1-Adrenoceptors function as stimulatory receptors involved particularly in smooth muscle contraction, especially contraction of vascular smooth muscle, both in local vasoconstriction and in the control of blood pressure and temperature, and contraction of the prostate and bladder neck. Central actions are now being elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

  2. Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1–124

    CAS  PubMed  Google Scholar 

  3. Starke K, Langer SZ (1979) A note on the terminology for presynaptic receptors. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon Press, Oxford, pp 1–3

    Google Scholar 

  4. Morrow AL, Creese I (1986) Characterization of alpha1-adrenergic receptor subtypes in rat brain: a re-evaluation of [3H]WB4101 and [3H]prazosin binding. Mol Pharmacol 29:321–330

    CAS  PubMed  Google Scholar 

  5. Han C, Abel PW, Minneman KP (1987) Alpha1-adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329:333–335

    CAS  PubMed  Google Scholar 

  6. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK (1988) Molecular cloning and expression of the cDNA for the hamster alpha1-adrenergic receptor. Proc Natl Acad Sci USA 85:7159–7163

    CAS  PubMed  Google Scholar 

  7. Lomasney JW, Cotecchia S, Lorenz W, Leung W-Y, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron M (1991) Molecular cloning and expression of the cDNA for the alpha1A-adrenergic receptor. J Biol Chem 266:6365–6369

    CAS  PubMed  Google Scholar 

  8. Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT, Yang-Feng TL, Caron MG, Lefkowitz RJ, Cotecchia S (1990) Molecular cloning and expression of the cDNA for a novel alpha1-adrenergic receptor subtype. J Biol Chem 265:8183–8189

    CAS  PubMed  Google Scholar 

  9. Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones: isolation of an alpha1D-adrenergic receptor cDNA. Mol Pharmacol 40:876–883

    CAS  PubMed  Google Scholar 

  10. Hieble JP, Bylund DB, Clarke DE, Eikenbur DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha1-adrenoceptors: Consensus update. Pharmacol Rev 47:267–270

    CAS  PubMed  Google Scholar 

  11. Docherty JR (1998) Subtypes of functional alphal- and alpha2-adrenoceptors. Eur J Pharmacol 361:1–15

    CAS  PubMed  Google Scholar 

  12. Guimarães S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53:319–356

    PubMed  Google Scholar 

  13. Hodges AN, Lynn BM, Bula JE, Donaldson MG, Dagenais MO, McKenzie DC (2003) Effects of pseudoephedrine on maximal cycling power and submaximal cycling efficiency. Med Sci Sports Exerc 35:1316–1319

    CAS  PubMed  Google Scholar 

  14. Swain RA, Harsha DM, Baenziger J, Saywell RM Jr (1997) Do pseudoephedrine or phenylpropanolamine improve maximum oxygen uptake and time to exhaustion? Clin J Sport Med 7:168–173

    CAS  PubMed  Google Scholar 

  15. Drew CD, Knight GT, Hughes DT, Bush M (1978) Comparison of the effects of d-(−)-ephedrine and l-(+)-pseudoephedrine on the cardiovascular and respiratory systems in man. Br J Clin Pharmacol 6:221–225

    CAS  PubMed  Google Scholar 

  16. Empey DW, Young GA, Letley E, John GC, Smith P, McDonnell KA, Bagg LR, Hughes DT (1980) Dose–response study of the nasal decongestant and cardiovascular effects of pseudoephedrine. Br J Clin Pharmacol 9:351–358

    CAS  PubMed  Google Scholar 

  17. Bright TP, Sandage BW Jr, Fletcher HP (1981) Selected cardiac and metabolic responses to pseudoephedrine with exercise. J Clin Pharmacol 21:488–492

    CAS  PubMed  Google Scholar 

  18. Ma G, Bavadekar SA, Davis YM, Lalchandani SG, Nagmani R, Schaneberg BT, Khan IA, Feller D (2007) Pharmacological effects of ephedrine alkaloids on human alpha(1)- and alpha(2)-adrenergic receptor subtypes. J Pharmacol Exp Ther 322:214

    CAS  PubMed  Google Scholar 

  19. Vansal SS, Feller DR (1999) Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes. Biochem Pharmacol 58:807–810

    CAS  PubMed  Google Scholar 

  20. Ulahannan TJ, Karpe F, Humphreys SM, Matthews DR, Frayn KN (2002) Effects of acute administration of doxazosin on fasting and postprandial haemodynamics and lipid metabolism in healthy subjects. Horm Metab Res 34:499–503

    CAS  PubMed  Google Scholar 

  21. Flechtner-Mors M, Jenkinson CP, Alt A, Biesalski HK, Adler G, Ditschuneit HH (2004) Sympathetic regulation of glucose uptake by the alpha1-adrenoceptor in human obesity. Obes Res 12:612–620

    CAS  PubMed  Google Scholar 

  22. Chen Q, Takahashi S, Zhong S, Hosoda C, Zheng HY, Ogushi T, Fujimura T, Ohta N, Tanoue A, Tsujimoto G, Kitamura T (2005) Function of the lower urinary tract in mice lacking alpha1d-adrenoceptor. J Urol 174:370–374

    CAS  PubMed  Google Scholar 

  23. Sanbe A, Tanaka Y, Fujiwara Y, Tsumura H, Yamauchi J, Cotecchia S, Koike K, Tsujimoto G, Tanoue A (2007) Alpha1-adrenoceptors are required for normal male sexual function. Br J Pharmacol 152:332–340

    CAS  PubMed  Google Scholar 

  24. Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403:86–89

    CAS  PubMed  Google Scholar 

  25. Furuya S, Kumamoto Y, Yokoyama E, Tsukamoto T, Izumi T, Abiko Y (1982) Alpha-adrenergic activity and urethral pressure in prostatic zone in benign prostatic hypertrophy. J Urol 128:836–839

    CAS  PubMed  Google Scholar 

  26. Caine M (1986) The present role of alpha-adrenergic blockers in the treatment of benign prostatic hypertrophy. J Urol 136:1–4

    CAS  PubMed  Google Scholar 

  27. Nickel JC, Sander S, Moon TD (2008) A meta-analysis of the vascular-related safety profile and efficacy of alpha-adrenergic blockers for symptoms related to benign prostatic hyperplasia. Int J Clin Pract 62:1547–1559

    CAS  PubMed  Google Scholar 

  28. Kojima Y, Sasaki S, Shinoura H, Hayashi Y, Tsujimoto G, Kohri K (2006) Quantification of alpha1-adrenoceptor subtypes by real-time RT-PCR and correlation with age and prostate volume in benign prostatic hyperplasia patients. Prostate 66:761–767

    CAS  PubMed  Google Scholar 

  29. Ford APDW, Arredondo NF, Blue DR, Bonhaus DW, Jasper J, Kava MS, Lesnick J, Pister JR, Shieh IM, Vimont RL, Williams TJ, McNea JE, Stamey TA, Clarke DE (1996) RS-17053, a selective alpha1A-adrenoceptor antagonist, displays low affinity for functional alpha1-adrenoceptors in human prostate: implications for adrenoceptor classification. Mol Pharmacol 49:209–215

    CAS  PubMed  Google Scholar 

  30. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S, Vimont RL, Chapple CR, Chess-Williams R, Eglen RM, Clarke DE, Ford AP (1999) In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br J Pharmacol 127:252–258

    CAS  PubMed  Google Scholar 

  31. Knepper SM, Buckner SA, Brune ME, DeBernardis JF, Meyer MD, Hancock AA (1995) A-61603, a potent alpha1-adrenergic receptor agonist, selective for the alpha1A receptor subtype. J Pharmacol Exp Ther 274:97–103

    CAS  PubMed  Google Scholar 

  32. Sleight AJ, Koek W, Bigg DC (1993) Binding of antipsychotic drugs at alpha1A- and alpha1B-adrenoceptors: risperidone is selective for the alpha 1B-adrenoceptors. Eur J Pharmacol 238:407–410

    CAS  PubMed  Google Scholar 

  33. King HK, Goetz AS, Ward SDC, Saussy DL Jr (1994) AH11110A is selective for the α1B subtype of α1-adrenoceptors. Soc Neurosci Abstr 20 p 52

  34. Marucci G, Angeli P, Buccioni M, Gulini U, Melchiorre C, Sagratini G, Testa R, Giardinà D (2005) (+)-Cyclazosin, a selective alpha1B-adrenoceptor antagonist: functional evaluation in rat and rabbit tissues. Eur J Pharmacol 522:100–107

    CAS  PubMed  Google Scholar 

  35. Eltze M (1996) In functional experiments, risperidone is selective, not for the B, but for the A subtype of alpha-1 adrenoceptor. Eur J Pharmacol 295:69–73

    CAS  PubMed  Google Scholar 

  36. Stam WB, Van der Graaf PH, Saxena PR (1998) Functional characterisation of the pharmacological profile of the putative alpha1B-adrenoceptor antagonist, (+)-cyclazosin. Eur J Pharmacol 361:79–83

    CAS  PubMed  Google Scholar 

  37. Eltze M, König H, Ullrich B, Grebe T (2001) Failure of AH11110A to functionally discriminate between alpha(1)-adrenoceptor subtypes A, B and D or between alpha(1)- and alpha(2)-adrenoceptors. Eur J Pharmacol 415:265–276

    CAS  PubMed  Google Scholar 

  38. Michel MC, Kerker J, Branchek TA, Forray C (1993) Selective irreversible binding of chloroethylclonidine at alpha1- and alpha2-adrenoceptor subtypes. Mol Pharmacol 44:1165–1170

    CAS  PubMed  Google Scholar 

  39. O’Rourke M, Kearns S, Docherty JR (1995) Investigations of the actions of chloroethylclonidine in rat aorta. Br J Pharmacol 115:1399–1406

    PubMed  Google Scholar 

  40. O’Rourke M, Gavin K, Docherty JR (1997) Further investigation of the alpha-adrenoceptor-mediated actions of chloroethylclonidine in rat aorta. Eur J Pharmacol 336:37–42

    PubMed  Google Scholar 

  41. Goetz AS, King HK, Ward SDC, True TA, Rimele TJ, Saussy DL (1995) BMY 7378 is a selective antagonist of the D subtype of alpha1-adrenoceptors. Eur J Pharmacol 272:R5–R6

    CAS  PubMed  Google Scholar 

  42. Cleary L, Murad K, Bexis S, Docherty JR (2005) The alpha (1D)-adrenoceptor antagonist BMY 7378 is also an alpha (2C)-adrenoceptor antagonist. Auton Autacoid Pharmacol 25:135–141

    CAS  PubMed  Google Scholar 

  43. Chaput Y, de Montigny C (1988) Effects of the 5-hydroxytryptamine receptor antagonist, BMY 7378, on 5-hydroxytryptamine neurotransmission: electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 246:359–370

    CAS  PubMed  Google Scholar 

  44. Murata S, Taniguchi T, Takahashi M, Okada K, Akiyama K, Muramatsu I (2000) Tissue selectivity of KMD-3213, an alpha(1)-adrenoreceptor antagonist, in human prostate and vasculature. J Urol 164:578–583

    CAS  PubMed  Google Scholar 

  45. Aboud RW, Shafii M, Docherty JR (1993) Investigations of the subtypes of alpha1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109:80–87

    CAS  PubMed  Google Scholar 

  46. Burt RP, Chapple CR, Marshall I (1995) Evidence for a functional alpha1A- (alpha1C-) adrenoceptor mediating contraction of rat epididymal vas deferens and an alpha1B-adrenoceptor mediating contraction of the rat spleen. Br J Pharmacol 115:467–475

    CAS  PubMed  Google Scholar 

  47. Burt RP, Chapple CR, Marshall I (1998) Alpha1A-Adrenoceptor mediated contraction of rat prostatic vas deferens and the involvement of ryanodine stores and Ca2+ influx stimulated by diacylglycerol and PKC. Br J Pharmacol 123:317–325

    CAS  PubMed  Google Scholar 

  48. Noble AJ, Chess-Williams R, Couldwell C, Furukawa K, Uchyiuma T, Korstanje C, Chapple CR (1997) The effects of tamsulosin, a high affinity antagonist at functional alpha1A- and alpha1D-adrenoceptor subtypes. Br J Pharmacol 120:231–238

    CAS  PubMed  Google Scholar 

  49. Villalobos-Molina R, Lopez-Guerrero JJ, Ibarra M (1997) Alpha1D- and alpha1A-adrenoceptors mediate contraction in rat renal artery. Eur J Pharmacol 322:225–227

    CAS  PubMed  Google Scholar 

  50. Villalobos-Molina R, Ibarra M (1996) Alpha1-adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the alpha1D or alpha 1A subtypes. Eur J Pharmacol 298:257–263

    CAS  PubMed  Google Scholar 

  51. Lachnitt WG, Tran AM, Clarke DE, Ford APDW (1997) Pharmacological characterization of an alpha1A-adrenoceptor mediating contractile responses to noradrenaline in isolated caudal artery of rat. Br J Pharmacol 120:819–826

    Google Scholar 

  52. Yu G-S, Han C (1994) Role of alpha1A- and alpha1B-adrenoceptors in phenylephrine induced positive inotropic response in isolated rat left atrium. J Cardiovasc Pharmacol 24:745–752

    CAS  PubMed  Google Scholar 

  53. Fagura MS, Lyfdford SJ, Douggall IG (1997) Pharmacological classification of alpha1-adrenoceptors mediating contractions of rabbit isolated ear artery: comparison with rat isolated thoracic aorta. Br J Pharmacol 120:247–258

    CAS  PubMed  Google Scholar 

  54. Mills K, Hausman N, Chess-Williams R (2008) Characterization of the alpha1-adrenoceptor subtype mediating contractions of the pig internal anal sphincter. Br J Pharmacol 155:110–117

    CAS  PubMed  Google Scholar 

  55. Furukawa K, Rosario DJ, Smith DJ, Chapple CR, Uchiyama T, Chess-Williams R (1995) Alpha1A-adrenoceptor-mediated contractile responses of the human vas deferens. Br J Pharmacol 116:1605–1610

    CAS  PubMed  Google Scholar 

  56. Moriyama N, Nasu K, Takeuchi T, Akiyama K, Murata S, Mishimatsu H, Yano J, Tsujimoto G, Kawabe K (1997) Quantification and distribution of alpha1-adrenoceptor subtype mRNAs in human vas deferens: comparison with those of epididymal and pelvic portions. Br J Pharmacol 122:1009–1014

    CAS  PubMed  Google Scholar 

  57. Marshall I, Burt RP, Chapple CR (1995) Noradrenaline contractions of human prostate mediated by alpha1A- (alpha1c-) adrenoceptor subtype. Br J Pharmacol 115:781–786

    CAS  PubMed  Google Scholar 

  58. Teng C-M, Guh J-H, Ko F-N (1994) Functional identification of alpha1-adrenoceptor subtypes in human prostate: comparison with those in rat vas deferens and spleen. Eur J Pharmacol 265:61–66

    CAS  PubMed  Google Scholar 

  59. Bexis S, Docherty JR (2009) Role of α1- and β3-adrenoceptor subtypes in the modulation by SR59230A of the effects of MDMA on body temperature in the mouse. Br J Pharmacol 158:259–266

    CAS  PubMed  Google Scholar 

  60. Bruchas MR, Toews ML, Bockman CS, Abel PW (2008) Characterization of the alpha1-adrenoceptor subtype activating extracellular signal-regulated kinase in submandibular gland acinar cells. Eur J Pharmacol 578:349–358

    CAS  PubMed  Google Scholar 

  61. Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piascik MT, Perez DM (2003) The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res 60:598–607

    CAS  PubMed  Google Scholar 

  62. Gray K, Short J, Ventura S (2008) The alpha1A-adrenoceptor gene is required for the alpha1L-adrenoceptor-mediated response in isolated preparations of the mouse prostate. Br J Pharmacol 155:103–109

    CAS  PubMed  Google Scholar 

  63. Woodcock EA (2007) Roles of alpha1A- and alpha1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 34:884–888

    CAS  PubMed  Google Scholar 

  64. Flavahan NA, Vanhoutte PA (1986) Alpha1-adrenoceptor subclassification in vascular smooth muscle. Trends Pharmacol Sci 7:347–349

    CAS  Google Scholar 

  65. Docherty JR (1989) The pharmacology of alpha1- and alpha2-adrenoceptors: evidence for and against a further subdivision. Pharmacol Ther 44:241–284

    CAS  PubMed  Google Scholar 

  66. Muramatsu I, Ohmura T, Kigoshi S, Hashimoto S, Oshita M (1990) Pharmacological subclassification of alpha1-adrenoceptors in vascular smooth muscle. Br J Pharmacol 99:197–201

    CAS  PubMed  Google Scholar 

  67. Muramatsu I, Oshita M, Ohmura T, Kigoshi S, Akino H, Gobara M, Okada K (1995) Pharmacological characterization of alpha1-adrenoceptor subtypes in the human prostate: functional and binding studies. Br J Urol 74:572–578

    Google Scholar 

  68. Ford APDW, Berge NV, Clarke DE (1993) Characterisation of alpha1-adrenoceptors in isolated anococcygeus muscle of rat. Br J Pharmacol 109:112P

    Google Scholar 

  69. Ohmura T, Oshita M, Kigoshi S, Muramatsu I (1992) Identification of alpha1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol 107:698–704

    Google Scholar 

  70. Amobi NI, Guillebaud J, Kaisary AV, Turner E, Smith IC (2002) Discrimination by SZL49 between contractions evoked by noradrenaline in longitudinal and circular muscle of human vas deferens. Br J Pharmacol 136:127–135

    CAS  PubMed  Google Scholar 

  71. Cleary L, Slattery J, Bexis S, Docherty JR (2004) Sympathectomy reveals alpha1A- and alpha1D-adrenoceptor components to contractions to noradrenaline in rat vas deferens. Br J Pharmacol 143:745–752

    CAS  PubMed  Google Scholar 

  72. Smith KM, MacMillan JB, McGrath JC (1997) Investigation of alpha1-adrenoceptor subtypes mediating vasoconstriction in rabbit cutaneous resistance arteries. Br J Pharmacol 122:825–832

    CAS  PubMed  Google Scholar 

  73. Van der Graaf PH, Shankley NP, Black JW (1996) Analysis of the effects of alpha1-adrenoceptor antagonists on noradrenaline-mediate contraction of rat small mesenteric artery. Br J Pharmacol 118:1308–1316

    PubMed  Google Scholar 

  74. Recio P, Orensanz LM, Martínez MP, Navarro-Dorado J, Bustamante S, García-Sacristán A, Prieto D, Hernández M (2008) Noradrenergic vasoconstriction of pig prostatic small arteries. Naunyn Schmiedebergs Arch Pharmacol 376:397–406

    CAS  PubMed  Google Scholar 

  75. Yamamoto Y, Koike K (1999) Alpha1-adrenoceptors in the guinea pig thoracic aorta. J Smooth Muscle Res 35:181–192

    CAS  PubMed  Google Scholar 

  76. Nakamura S, Taniguchi T, Suzuki F, Akagi Y, Muramatsu I (1999) Evaluation of alpha1-adrenoceptors in the rabbit iris: pharmacological characterization and expression of mRNA. Br J Pharmacol 127:1367–1374

    CAS  PubMed  Google Scholar 

  77. Kava MS, Blue DR, Vimont RL, Clarke DE, Ford APDW (1998) Alpha1L-adrenoceptor mediation of smooth muscle contraction in rabbit bladder neck: a model for lower urinary tract tissues of man. Br J Pharmacol 123:1359–1366

    CAS  PubMed  Google Scholar 

  78. Fukasawa R, Taniguchi N, Moriyama N, Ukai Y, Yamazaki S, Ueki T, Kameyama S, Kimura K, Kawabe K (1998) The alpha1L-adrenoceptor subtype in the lower urinary tract: a comparison of human urethra and prostate. Br J Urol 82:733–737

    CAS  PubMed  Google Scholar 

  79. Gray KT, Ventura S (2006) Alpha1L-adrenoceptors mediate contractions of the isolated mouse prostate. Eur J Pharmacol 540:155–161

    CAS  PubMed  Google Scholar 

  80. Ford APDW, Daniels D, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE (1997) Pharmacological pleiotropism of the human recombinant alpha1A-adrenoceptor: implications for alpha1-adrenoceptor classification. Br J Pharmacol 121:137–1135

    Google Scholar 

  81. Daniels DV, Gever JR, Jasper JR, Kava MS, Lesnick JD, Meloy TD, Stepan G, Williams TJ, Clarke DE, Chang DJ, Ford AP (1999) Human cloned alpha1A-adrenoceptor isoforms display alpha1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol 370:337–343

    CAS  PubMed  Google Scholar 

  82. Morishima S, Suzuki F, Yoshiki H, Md Anisuzzaman AS, Sathi ZS, Tanaka T, Muramatsu I (2008) Identification of the alpha1L-adrenoceptor in rat cerebral cortex and possible relationship between alpha1L- and alpha1A-adrenoceptors. Br J Pharmacol 153:1485–1494

    CAS  PubMed  Google Scholar 

  83. Martí D, Miquel R, Ziani K, Gisbert R, Ivorra MD, Anselmi E, Moreno L, Villagrasa V, Barettino D, D’Ocon P (2005) Correlation between mRNA levels and functional role of alpha1-adrenoceptor subtypes in arteries: evidence of alpha1L as a functional isoform of the alpha1A-adrenoceptor. Am J Physiol Heart Circ Physiol 289:H1923–H1932

    PubMed  Google Scholar 

  84. Shibata K, Hirasawa A, Moriyama N, Kawabe K, Ogawa S, Tsujimoto G (1996) Alpha1a-adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophy. Br J Pharmacol 118:1403–1408

    CAS  PubMed  Google Scholar 

  85. Ramsay D, Carr IC, Pediani J, Lopez-Gimenez JF, Thurlow R, Fidock M, Milligan G (2004) High-affinity interactions between human alpha1A-adrenoceptor C-terminal splice variants produce homo- and heterodimers but do not generate the alpha1L-adrenoceptor. Mol Pharmacol 66:228–239

    CAS  PubMed  Google Scholar 

  86. Uberti MA, Hall RA, Minneman KP (2003) Subtype-specific dimerization of alpha1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol 64:1379–1390

    CAS  PubMed  Google Scholar 

  87. Eltze M (1996) Functional evidence for an alpha1B-adrenoceptor mediating contraction of the mouse spleen. Eur J Pharmacol 311:187–198

    CAS  PubMed  Google Scholar 

  88. Cavalli A, Lattion A, Hummler E, Nenninger M, Pedrazzini T (1997) Decreased blood pressure response in mice deficient of the alpha 1b-adrenergic receptor. Proc Nat Acad Sci USA 94:11589–11595

    CAS  PubMed  Google Scholar 

  89. Hosoda C, Koshimizu TA, Tanoue A, Nasa Y, Oikawa R, Tomabechi T, Fukuda S, Shinoura H, Oshikawa S, Takeo S, Kitamura T, Cotecchia S, Tsujimoto G (2005) Two alpha1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in blood pressure regulation. Mol Pharmacol 67:912–922

    CAS  PubMed  Google Scholar 

  90. Daly CJ, Deighan C, McGee A, Mennie D, Ali Z, McBride M, McGrath JC (2002) A knockout approach indicates a minor vasoconstrictor role for vascular alpha1B-adrenoceptors in mouse. Physiol Genomics 9:85–91

    CAS  PubMed  Google Scholar 

  91. Daly CJ, Cotecchia S, McGrath JC (1998) Low frequency electrical field stimulation elicits responses in segments of mouse tail artery which are slower in alpha1B-knockout mice than in control mice. Naunyn Schmiedebergs Arch Pharmacol 358:R600

    Google Scholar 

  92. Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ, Waugh DJ, Ross SA, Gaivin RJ, Morehead AJ, Thomas JD, Plow EF, McGrath JC, Piascik MT, Perez DM (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the alpha 1B-adrenergic receptor. J Biol Chem 276:13738–13743

    CAS  PubMed  Google Scholar 

  93. Piascik MT, Guarino RD, Smith MS, Soltis EE, Saussy DL, Perez DM (1995) The specific contribution of the novel alpha-1D adrenoceptor to the contraction of vascular smooth muscle. J Pharmacol Exp Ther 275:1583–1589

    CAS  PubMed  Google Scholar 

  94. Hussain M, Marshall I (1997) Characterization of alpha1-adrenoceptor subtypes mediating contractions to phenylephrine in rat thoracic aorta, mesenteric artery and pulmonary artery. Br J Pharmacol 122:849–858

    CAS  PubMed  Google Scholar 

  95. Yang H-T, Endoh M (1997) Pharmacological evidence for alpha1D-adrenoceptors in the rabbit ventricular myocardium: analysis with BMY 7378. Br J Pharmacol 122:1541–1550

    CAS  PubMed  Google Scholar 

  96. Deighan C, Methven L, Naghadeh MM, Wokoma A, Macmillan J, Daly CJ, Tanoue A, Tsujimoto G, McGrath JC (2005) Insights into the functional roles of alpha(1)-adrenoceptor subtypes in mouse carotid arteries using knockout mice. Br J Pharmacol 144:558–565

    CAS  PubMed  Google Scholar 

  97. Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002) The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 109:765–775

    CAS  PubMed  Google Scholar 

  98. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, Perez DM, Tanoue A, Tsujimoto G, Post GR, Piascik MT (2003) Differential cardiovascular regulatory activities of the alpha1B- and alpha1D-adrenoceptor subtypes. J Pharmacol Exp Ther 305:1045–1053

    CAS  PubMed  Google Scholar 

  99. Hosoda C, Tanoue A, Shibano M, Tanaka Y, Hiroyama M, Koshimizu TA, Cotecchia S, Kitamura T, Tsujimoto G, Koike K (2005) Correlation between vasoconstrictor roles and mRNA expression of alpha1-adrenoceptor subtypes in blood vessels of genetically engineered mice. Br J Pharmacol 146:456–466

    CAS  PubMed  Google Scholar 

  100. Zacharia J, Hillier C, Tanoue A, Tsujimoto G, Daly CJ, McGrath JC, MacDonald A (2005) Evidence for involvement of alpha1D-adrenoceptors in contraction of femoral resistance arteries using knockout mice. Br J Pharmacol 146:942–951

    CAS  PubMed  Google Scholar 

  101. Filippi S, Parenti A, Donnini S, Granger HJ, Fazzini A, Ledda F (2001) Alpha(1D)-adrenoceptors cause endothelium-dependent vasodilatation in the rat mesenteric vascular bed. J Pharmacol Exp Ther 296:869–875

    CAS  PubMed  Google Scholar 

  102. Vinci MC, Bellik L, Filippi S, Ledda F, Parenti A (2007) Trophic effects induced by alpha1D-adrenoceptors on endothelial cells are potentiated by hypoxia. Am J Physiol Heart Circ Physiol 293:H2140–H2147

    CAS  PubMed  Google Scholar 

  103. Bexis S, Cleary L, McGrath JC, Tanoue A, Tsujimoto G, Docherty JR (2008) Alpha(1D)-adrenoceptors mediate nerve and agonist-evoked contractions in mouse vas deferens: evidence obtained from knockout technology. Auton Autacoid Pharmacol 28:81–85

    CAS  PubMed  Google Scholar 

  104. Taki N, Tanaka T, Zhang L, Suzuki F, Israilova M, Taniguchi T, Hiraizumi-Hiraoka Y, Shinozuka K, Kunitomo M, Muramatsu I (2004) Alpha-1D adrenoceptors are involved in reserpine-induced supersensitivity of rat tail artery. Br J Pharmacol 142:647–656

    CAS  PubMed  Google Scholar 

  105. Noguera MA, Ivorra MD, D’Ocon P (1996) Functional evidence of inverse agonism in vascular smooth muscle. Br J Pharmacol 119:158–164

    CAS  PubMed  Google Scholar 

  106. Ziani K, Gisbert R, Noguera MA, Ivorra MD, D’Ocon P (2002) Modulatory role of a constitutively active population of alpha(1D)-adrenoceptors in conductance arteries. Am J Physiol Heart Circ Physiol 282:H475–H481

    CAS  PubMed  Google Scholar 

  107. Gisbert R, Pérez-Vizcaino F, Cogolludo AL, Noguera MA, Ivorra MD, Tamargo J, D’Ocon P (2003) Cytosolic Ca2+ and phosphoinositide hydrolysis linked to constitutively active alpha1D-adrenoceptors in vascular smooth muscle. J Pharmacol Exp Ther 305:1006–1014

    CAS  PubMed  Google Scholar 

  108. García-Cazarín ML, Smith JL, Olszewski KA, McCune DF, Simmerman LA, Hadley RW, Kraner SD, Michael T, Piascik MT (2008) The α1D-adrenergic receptor is expressed intracellularly and coupled to increases in intracellular calcium and reactive oxygen species in human aortic smooth muscle cells. J Mol Signal 3:6

    PubMed  Google Scholar 

  109. McCune DF, Edelmann SE, Olges JR, Post GR, Waldrop BA, Waugh DJ, Perez DM, Piascik MT (2000) Regulation of the cellular localization and signaling properties of the alpha1B- and alpha1D-adrenoreceptors by agonists and inverse antagonists. Mol Pharmacol 57:659–666

    CAS  PubMed  Google Scholar 

  110. Rossier O, Abuin L, Fanelli F, Leonardi A, Cotecchia S (1999) Inverse agonism and neutral antagonism at alpha1A- and alpha1B-adrenergic receptor subtypes. Mol Pharmacol 56:858–866

    CAS  PubMed  Google Scholar 

  111. Minneman KP (2007) Heterodimerization and surface localization of G protein coupled receptors. Biochem Pharmacol 73:1043–1050

    CAS  PubMed  Google Scholar 

  112. Dalrymple MB, Pfleger KD, Eidne KA (2008) G protein-coupled receptor dimers: functional consequences, disease states and drug targets. Pharmacol Ther 118:359–371

    CAS  PubMed  Google Scholar 

  113. Uberti MA, Hague C, Oller H, Minneman KP, Hall RA (2005) Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther 313:16–23

    CAS  PubMed  Google Scholar 

  114. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:9

    Google Scholar 

  115. Chen XL, Rembold CM (1995) Phenylephrine contracts rat tail artery by one electromechanical and three pharmacomechanical mechanisms. Am J Physiol 268:H74–H81

    CAS  PubMed  Google Scholar 

  116. Minneman KP (1988) Alpha1-adrenergic receptor subtypes, inositol phosphates and sources of cell Ca2+. Pharmacol Rev 40:87–119

    CAS  PubMed  Google Scholar 

  117. Wu D, Katz A, Lee C, Simon MI (1992) Activation of phospholipase C by alpha1-adrenergic receptors in mediated by the alpha subunits of Gq family. J Biol Chem 267:25798–25802

    CAS  PubMed  Google Scholar 

  118. Perez DM, DeYoung MP, Graham RM (1993) Coupling of expressed alpha1B- and alpha1D-adrenergic receptors to multiple signaling pathways is both G-protein and cell type specific. Mol Pharmacol 44:784–795

    CAS  PubMed  Google Scholar 

  119. Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42

    CAS  PubMed  Google Scholar 

  120. Gu H, Trajkovic S, LaBelle EF (1992) Norepinephrine-induced phosphatidylcholine hydrolysis by phospholipases D and C in rat tail artery. Am J Physiol 262:C1376–C1383

    CAS  PubMed  Google Scholar 

  121. Ruan Y, Kan H, Parmentier J-H, Fatima S, Allen LF, Malik KU (1998) Alpha-1A adrenergic receptor stimulation with phenylephrine promotes arachidonic acid release by activation of phospholipase D in rat-1 fibroblasts: inhibition by protein kinase A. J Pharmacol Exp Ther 284:575–585

    Google Scholar 

  122. Gallego M, Setién R, Puebla L, Boyano-Adánez Mdel C, Arilla E, Casis O (2005) Alpha1-adrenoceptors stimulate a Galphas protein and reduce the transient outward K+ current via a cAMP/PKA-mediated pathway in the rat heart. Am J Physiol Cell Physiol 288:C577–C585

    CAS  PubMed  Google Scholar 

  123. Mueed I, Bains P, Zhang L, MacLeod KM (2004) Differential participation of protein kinase C and Rho kinase in α1-adrenoceptor mediated contraction in rat arteries. Can J Physiol Pharmacol 82:895–902

    CAS  PubMed  Google Scholar 

  124. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and non muscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    CAS  PubMed  Google Scholar 

  125. Piascik MT, Kusiak JW, Barron KW (1990) Alpha1-adrenoceptor subtypes and the regulation of peripheral hemodynamics in the conscious rat. Eur J Pharmacol 186:273–278

    CAS  PubMed  Google Scholar 

  126. Castillo EF, López RM, Rodríguez-Silverio J, Bobadilla RA, Castillo C (1998) Alpha 1D-adrenoceptors contribute to the neurogenic vasopressor response in pithed rats. Fundam Clin Pharmacol 12:584–589

    CAS  PubMed  Google Scholar 

  127. López-Guerrero JJ, Ibarra M, Villalobos-Molina R (2005) Postjunctional alpha1-adrenoceptors in the vasculature of the pithed mouse are of the alpha1A-subtype. Auton Autacoid Pharmacol 25:101–103

    PubMed  Google Scholar 

  128. Rokosh DG, Simpson PC (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 99:9474–9479

    CAS  PubMed  Google Scholar 

  129. O’Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC, Simpson GL, Cotecchia S, Rokosh DG, Grossman W, Foster E, Simpson PC (2003) The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111:1783–1791

    PubMed  Google Scholar 

  130. Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3, 4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    CAS  PubMed  Google Scholar 

  131. Green AR, O’Shea E, Saadat KS, Elliott JM, Colado MI (2005) Studies on the effect of MDMA (‘ecstasy’) on the body temperature of rats housed at different ambient room temperatures. Br J Pharmacol 146:306–312

    CAS  PubMed  Google Scholar 

  132. Bexis S, Docherty JR (2008) Role of alpha(1)-adrenoceptor subtypes in the effects of methylenedioxy methamphetamine (MDMA) on body temperature in the mouse. Br J Pharmacol 153:591–597

    CAS  PubMed  Google Scholar 

  133. Sprague JE, Brutcher RE, Mills EM, Caden D, Rusyniak DE (2004) Attenuation of 3, 4-methylenedioxymethamphatamine (MDMA, Ecstasy)-induced rhabdomyolysis with α1- plus β3-adrenoceptor antagonists. Br J Pharmacol 142:667–670

    CAS  PubMed  Google Scholar 

  134. Brahmadevara N, Shaw AM, MacDonald A (2004) Alpha1-adrenoceptor antagonist properties of CGP 12177A and other beta-adrenoceptor ligands: evidence against beta(3)- or atypical beta-adrenoceptors in rat aorta. Br J Pharmacol 142:781–787

    CAS  PubMed  Google Scholar 

  135. Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 497:209–222

    CAS  PubMed  Google Scholar 

  136. Papay R, Gaivin R, McCune DF, Rorabaugh BR, Macklin WB, McGrath JC, Perez DM (2004) Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J Comp Neurol 478:1–10

    CAS  PubMed  Google Scholar 

  137. Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM (2000) Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 6:1388–1394

    CAS  PubMed  Google Scholar 

  138. Chen Q, Li DP, Pan HL (2006) Presynaptic alpha1 adrenergic receptors differentially regulate synaptic glutamate and GABA release to hypothalamic presympathetic neurons. J Pharmacol Exp Ther 316:733–742

    CAS  PubMed  Google Scholar 

  139. Rump LC, Majewski H (1987) Modulation of noradrenaline release through alpha1- and alpha2-adrenoceptors in rat isolated kidney. J Cardiovasc Pharmacol 9:500–507

    CAS  PubMed  Google Scholar 

  140. Shinozuka K, Kunitomo M, Bjur RA, Westfall DP, Hattori K (1995) Effect of methoxamine on noradrenaline release in the caudal artery of hypertensive rats. Clin Exp Pharmacol Physiol 22:S88–S90

    CAS  Google Scholar 

  141. Bognar TI, Baretti R, Fischer S, Veldet C, Fuder H (1990) Alpha-adrenoceptor mediated facilitation of acetylcholine release in rat perfused heart. J Pharmacol Exp Ther 254:702–710

    CAS  PubMed  Google Scholar 

  142. Keast JR, Kawatani M, De Groat WC (1990) Sympathetic modulation of cholinergic transmission in cat vesical ganglia is mediated by alpha1- and alpha2-adrenoceptors. Am J Physiol 258:R44–R50

    CAS  PubMed  Google Scholar 

  143. Yoshimura N, de Groat WC (1992) Patch clamp analysis of afferent and efferent neurons that innervate the urinary bladder of the rat. Soc Neurosci Abstr 18:126

    Google Scholar 

  144. Somogyi GT, Tanowitz M, de Groat WC (1995) Prejunctional facilitatory alpha-1 adrenoceptors in the rat urinary bladder. Br J Pharmacol 114:1710–1716

    CAS  PubMed  Google Scholar 

  145. Wada T, Hasegawa Y, Ono H (1997) Characterization of alpha1-adrenoceptor subtypes in facilitation of rat spinal motoneuron activity. Eur J Pharmacol 340:45–52

    CAS  PubMed  Google Scholar 

  146. Sladek CD, Song Z (2008) Regulation of vasopressin release by co-released neurotransmitters: mechanisms of purinergic and adrenergic synergism. Prog Brain Res 170:93–107

    CAS  PubMed  Google Scholar 

  147. Yuan WX, Chen SR, Chen H, Pan HL (2009) Stimulation of alpha(1)-adrenoceptors reduces glutamatergic synaptic input from primary afferents through GABA(A) receptors and T-type Ca(2+) channels. Neuroscience 158:1616–1624

    CAS  PubMed  Google Scholar 

  148. Herold S, Hecker C, Deitmer JW, Brockhaus J (2005) Alpha1-adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. J Neurosci Res 82:571–579

    CAS  PubMed  Google Scholar 

  149. Araneda RC, Firestein S (2006) Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb. J Neurosci 26:3292–3298

    CAS  PubMed  Google Scholar 

  150. Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25:173–183

    CAS  PubMed  Google Scholar 

  151. Somogyi GT, Tanowitz M, Zernova G, de Groat WC (1996) M1 muscarinic receptor-induced facilitation of ACh and noradrenaline release in the rat bladder is mediated by protein kinase C. J Physiol 496:245–254

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Docherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docherty, J.R. Subtypes of functional α1-adrenoceptor. Cell. Mol. Life Sci. 67, 405–417 (2010). https://doi.org/10.1007/s00018-009-0174-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0174-4

Keywords

Navigation