Skip to main content

Adrenergic mechanisms in blood vessels: Morphological and pharmacological aspects

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 96))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cAMP:

cyclic adenosine monophosphate

COMT:

catechol O-methyl transferase

DCI:

dichloroisoprenaline

DOCA:

desoxycorticosterone acetate

DOMA:

3,4-dihydroxymandelic acid

DOPEG:

3,4-dihydroxyphenylglycol

MAO:

monoamine oxidase

MOPEG:

3-methoxy-4-hydroxyphenylglycol

MN:

metanephrine

NMN:

normetanephrine

OMDA:

O-methylated and deaminated metabolites (MOPEG + VMA)

OMI:

O-methyl-isoprenaline

U-0521:

3,4-dihydroxy-2-methyl propiophenone

VMA:

“vanillylmandelic” (3-methoxy-4-hydroxymandelic) acid

References

  • Åblad B, Carlsson E, Carlsson C, Dahlöf L, Holtberg E (1974) Cardiac effects of β-adrenergic receptor antagonists. Adv Cardiol 12:290–302

    Google Scholar 

  • Abraham A (1969) Microscopic innervation of the heart and blood vessels in vertebrates including man. Pergamon, Oxford

    Google Scholar 

  • Adler-Graschinsky E, Langer SZ (1975) Possible role of a β-adrenoceptor in the regulation of noradrenaline release by nerve stimulation through a positive feedback mechanism. Br J Pharmacol 53:43–50

    Google Scholar 

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    Google Scholar 

  • Allen GS, Glover AB, Rand MJ, Story DF (1972) Effects of acetylcholine on vasoconstriction and release of 3H-noradrenaline in response to sympathetic nerve stimulation in the isolated artery of the rabbit ear. Br J Pharmacol 46:527–528P

    Google Scholar 

  • Allen GS, Rand MJ, Story DF (1973) Techniques for studying adrenergic transmitter release in an isolated perfused artery. Cardiovasc Res 7:423–428

    Google Scholar 

  • Amer MS, Gomel AW, Perack JL Jr, Ferguson HC, McKinney GR (1975) Observations of cyclic nucleotide metabolism in the hearts and vessels of hypertensive rats. Proc Natl Acad Sci USA 71:4930–4934

    Google Scholar 

  • Appenzeller O (1964) Electron microscopic study of the innervation of the auricular artery in the rat. J Anat (London) 98:87–91

    Google Scholar 

  • Aprigliano O, Hermsmeyer K (1976) In vitro denervation of the portal vein and caudal artery of the rat. J Pharmacol Exp Ther 198:568–577

    Google Scholar 

  • Aprigliano O, Hermsmeyer K (1977) Trophic influence of the sympathetic nervous system on the rat portal vein. Circ Res 41:198–206

    Google Scholar 

  • Armstrong JM, Boura ALA (1973) Effects of clinidine and guanethidine on peripheral sympathetic nerve function in the pithed rat. Br J Pharmacol 47:850–852

    Google Scholar 

  • Avakian OV, Gillespie JS (1968) Uptake of noradrenaline by adrenergic nerves, smooth muscle and connective tissue in isolated perfused arteries and its correlation with the vasoconstrictor response. Br J Pharmacol 32:168–184

    Google Scholar 

  • Azevedo I, Osswald W (1976) Uptake, distribution and metabolism of isoprenaline in the dog saphenous vein. Naunyn-Schmiedeberg's Arch Pharmacol 295:141–147

    Google Scholar 

  • Azevedo I. Silva PS (1981) Are fibroblasts adrenergically innervated cells? Blood Vessels 18:330–332

    Google Scholar 

  • Azevedo I, Castro-Tavares J, Garrett J (1981) Ultrastructural changes in blood vessels of perinephritic hypertensive dogs. Blood Vessels 18:110–119

    Google Scholar 

  • Barajas L (1964) The innervation of the juxtaglomerular apparatus. An electron microscopic study of the innervation of glomerular arterioles. Lab Invest 13:916–929

    Google Scholar 

  • Baron GD, Speden RN, Bohr DF (1972) Beta-adrenergic receptors in coronary and skeletal muscle arteries. Am J Physiol 223:878–881

    Google Scholar 

  • Belfrage E (1978) Studies on the control of blood flow and lipolysis by α-and β-adrenoceptor in canine subcutaneous adipose tissue. Ph D Thesis, Karolinska Institute, Stockholm University

    Google Scholar 

  • Belfrage E, Fredholm BB, Rosell S (1977) Effect of catechol-O-methyl transferase (COMT) inhibition on the vascular and metabolic responses to noradrenaline, isoprenaline and sympathetic nerve stimulation in canine subcutaneous adipose tissue. Naunyn-Schmiedeberg's Arch Pharmacol 300:11–17

    Google Scholar 

  • Bell C (1974) Release of endogenous noradrenaline from an isolated elastic artery. J Physiol (London) 236:473–482

    Google Scholar 

  • Bell C, Vogt M (1971) Release of endogenous noradrenaline from an isolated muscular artery. J Physiol (London) 215:509–520

    Google Scholar 

  • Berkowitz BA, Spector S (1976) Uptake, storage and synthesis of catecholamines in blood vessels and its significance in vascular function and drug action. In: Bevan JA, Burnstock G, Johansson B, Maxwell RA, Nedergaard OA (eds) Vascular neuro-effector mechanisms. Karger, Basel, pp 102–111

    Google Scholar 

  • Berkowitz BA, Tarver JH, Spector S (1971) Norepinephrine in blood vessels: concentration, binding, uptake and depletion. J Pharmacol Exp Ther 177:119–126

    Google Scholar 

  • Berthelsen S, Pettinger WA (1977) A functional basis for classification of α-adrenergic receptors. Life Sci 21:595–606

    Google Scholar 

  • Bevan JA (1977) Some functional consequences of variation, in adrenergic synaptic cleft width and in nerve density and distribution. Fed Proc 36:2439–2443

    Google Scholar 

  • Bevan JA (1979) Some basis of differences in vascular responses to sympathetic activity. Variations on a theme. Circ Res 45:161–179

    Google Scholar 

  • Bevan JA, Duckles SP (1975) Evidence for α-adrenergic receptors on intimal endothelium. Blood Vessels 12:307–310

    Google Scholar 

  • Bevan JA, Osher JV (1965) Relative sensitivity of some large blood vessels of the rabbit to sympathomimetic amines. J Pharmacol Exp Ther 150:370–374

    Google Scholar 

  • Bevan JA, Osher JV (1970) Distribution of norepinephrine released from adrenergic motor terminals in arterial wall. Eur J Pharmacol 13:55–58

    Google Scholar 

  • Bevan JA, Purdy RE (1973) Variations in adrenergic innervation and contractile responses of the rabbit saphenous artery. Circ Res 32:746–751

    Google Scholar 

  • Bevan JA, Su C (1973) Sympathetic mechanisms in blood vessels: nerve and muscle relationships. Ann Rev Pharmacol 13:269–285

    Google Scholar 

  • Bevan JA, Török J (1970) Movement of norepinephrine through the media of rabbit aorta. Circ Res 27:325–331

    Google Scholar 

  • Bevan JA, Bevan RD, Purdy RE, Robinson CP, Su C, Waterson JG (1972) Comparison of adrenergic mechanisms in an elastic and a muscular artery of the rabbit. Circ Res 30:541–548

    Google Scholar 

  • Bevan JA, Pegram BL, Prehn JL, Winquist RJ (1978) Beta-adrenergic receptor mediated vasodilatation. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 258–265

    Google Scholar 

  • Bevan JA, Bevan RD, Duckles SP (1980a) Adrenergic regulation of vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV Jr (eds) Vascular smooth muscle. American Physiological Society, Bethesda (Handbook of physiology, vol II, sect 2, pp 515–566)

    Google Scholar 

  • Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (1980b) Vascular neuroeffector mechanisms. Chapter 12: Disposition of norepinephrine in the blood vessel wall. Raven, New York, pp 147–180

    Google Scholar 

  • Bevan RD (1975) Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery. Circ Res 37:14–19

    Google Scholar 

  • Bevan RD, Tsuru H (1979a) Long term denervation of vascular smooth muscle causes not only functional but structural change. Blood Vessels 16:109–112

    Google Scholar 

  • Bevan RD, Tsuru H (1979b) The trophic effect of the sympathetic neuron on the artery wall in growing rabbits. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon, New York, pp 465–467

    Google Scholar 

  • Bevan RD, Tsuru H (1980) Changes in the tunica media of the rabbit ear artery after denervation are age-related. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 119–123

    Google Scholar 

  • Bieth N, Rouot B, Schwartz J, Velly J (1980) Comparison of pharmacological and binding assays for ten β-adrenoceptor blocking agents and two β-adrenoceptor agonists. Br J Pharmacol 68:563–569

    Google Scholar 

  • Bloom FE (1972) Electron microscopy of catecholamine-containing structures. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, pp 46–105)

    Google Scholar 

  • Bönisch H (1981) The role of sodium in the indirect effects of sympathomimetic amines. Proceedings of the 4th Meeting Adrenergic Mechanisms, University of Porto, Porto, p 137

    Google Scholar 

  • Bönisch H, Uhlig W, Trendelenburg U (1974) Analysis of the compartments involved in the extraneuronal storage and metabolism of isoprenaline in the perfused heart. Naunyn-Schmiedeberg's Arch Pharmacol 283:233–244

    Google Scholar 

  • Bohr DF (1967) Adrenergic receptors in coronary arteries. Ann NY Acad Sci 139:799–807

    Google Scholar 

  • Bonaccorsi A, Jespersen J, Garattini S (1970) The influence of desipramine on the sensitivity and accumulation of noradrenaline in the isolated tail artery. Eur J Pharmacol 9:124–127

    Google Scholar 

  • Booz KH (1971) Zur Innervation der autonom pulsierenden Vena porta der weissen Ratte. Eine histochemische und elektronenmikroskopische Untersuchung. Z Zellforsch Anat 117:394–418

    Google Scholar 

  • Borowski E, Ehrl H, Starke K (1976) Relative pre-and postsynaptic potencies of α-adrenolytic drugs. Naunyn-Schmiedeberg's Arch Pharmacol 293:R2

    Google Scholar 

  • Branco D, Osswald W (1980) The fate of isoprenaline after inhibition of O-methylation and of extraneuronal uptake. Eur J Pharmacol 67:247–253

    Google Scholar 

  • Branco D, Azevedo I, Sarmento A, Osswald W (1981a) The fate of isoprenaline in the isolated rabbit aorta. Radiochemical and morphologic observations. Naunyn-Schmiedeberg's Arch Pharmacol 316:120–125

    Google Scholar 

  • Branco D, Azevedo I, Teixeira AA, Osswald W (1981b) Influence of sympathetic denervation on extraneuronal mechanisms of saphenous vein. Proceedings 4th Meeting Adrenergic Mechanisms, University of Porto, Porto, p 179

    Google Scholar 

  • Brandão F (1976) A comparative study of the role played by some inactivation pathways in the disposition of the transmitter in the rabbit aorta and the saphenous vein of the dog. Blood Vessels 13:309–318

    Google Scholar 

  • Brandão F (1977) Inactivation of norepinephrine in an isolated vein. J Pharmacol Exp Ther 203:23–29

    Google Scholar 

  • Brandão F (1979) Inactivation of the sympathetic transmitter in a vascular structure (in Portuguese). Ph D Thesis, University of Porto

    Google Scholar 

  • Brandão F, Guimarães S (1974) Inactivation of endogenous noradrenaline released by electrical stimulation in vitro of dog saphenous vein. Blood Vessels 11:45–54

    Google Scholar 

  • Brandão F, Monteiro JG, Osswald W (1978) Differences in the metabolic fate of noradrenaline released by electrical stimulation or by tyramine. Naunyn-Schmiedeberg's Arch Pharmacol 305:37–40

    Google Scholar 

  • Brandão F, Paiva MQ, Guimarães S (1980a) The role of neuronal and extraneuronal systems in the metabolism of adrenaline and noradrenaline released from nerve terminals by electrical stimulation. Naunyn-Schmiedeberg's Arch Pharmacol 311:1–7

    Google Scholar 

  • Brandão F, Rodrigues-Pereira E, Monteiro JG, Osswald W (1980b) Characteristics of tyramine induced release of noradrenaline: mode of action of tyramine and metabolic fate of the transmitter. Naunyn-Schmiedeberg's Arch Pharmacol 311:9–15

    Google Scholar 

  • Brandão F, Rodrigues-Pereira E, Monteiro JG, Davidson R (1981) A kinetic study of the release of noradrenaline by tyramine. Naunyn-Schmiedeberg's Arch Pharmacol 318:83–87

    Google Scholar 

  • Brodde OE, Gross G (1980) 3H-spiroperidol labels dopamine receptors in membranes from rabbit mesenteric artery. Naunyn-Schmiedeberg's Arch Pharmacol 311:249–253

    Google Scholar 

  • Brown GL, Gillespie JS (1957) The output of sympathetic transmitter from the spleen of the cat. J Physiol (London) 138:81–102

    Google Scholar 

  • Brown MJ, Macquin I (1981) Is adrenaline the cause of essential hypertension? Lancet 2:1079–1082

    Google Scholar 

  • Bryan LJ, O'Donnell SR (1979) Comparison of the effects of tropolone, β-thujaplicin and U-0521 on the extraneuronal accumulation of isoprenaline in guinea-pig trachealis smooth muscle cells. Naunyn-Schmiedeberg's Arch Pharmacol 307:235–241

    Google Scholar 

  • Bryan LJ, Cole JJ, O'Donnell SR, Wanstall JC (1981) A study designed to explore the hypothesis that beta-1 adrenoceptors are “innervated” receptors and beta-2 adrenoceptors are “hormonals” receptors. J Pharmacol Exp Ther 216:395–400

    Google Scholar 

  • Burnstock G (1975) Innervation of vascular smooth muscle: histochemistry and electron microscopy. Clin Exp Pharmacol Physiol [Suppl] 2:7–20

    Google Scholar 

  • Burnstock G, Costa M (1975) Adrenergic neurons: their organization, function and development in the peripheral nervous system. Chapman & Hall, London

    Google Scholar 

  • Burnstock G, Gannon BJ, Iwayama T (1970) Sympathetic innervation of vascular muscle in normal and hypertensive animals. Circ Res 27 [Suppl II]: 5–24

    Google Scholar 

  • Burnstock G, McCulloch MW, Story DF, Wright ME (1972) Factors affecting the extraneuronal inactivation of noradrenaline in cardiac and smooth muscle. Br J Pharmacol 46:243–253

    Google Scholar 

  • Burri PH, Weibel ER (1968) Beeinflussung einer spezifischen cytoplasmatischen Organelle von Endothelzellen durch Adrenalin. Z Zellforsch 88:426–440

    Google Scholar 

  • Caramona M (1982) Monoamine oxidase of types A and B in the saphenous vein and mesenteric artery of the dog. Naunyn-Schmiedeberg's Arch Pharmacol (in press)

    Google Scholar 

  • Carlsson E, Åblad B, Brandstrom A, Carlsson B (1972) Differential blockade of the chronotropic effects of various adrenergic stimuli in the cat heart. Life Sci 11:953–958

    Google Scholar 

  • Cavero I, Dennis T, Lefèvre-Borg F, Perrot P, Roach AG, Scatton B (1979) Effects of clonidine, prazosin and phentolamine on heart rate and coronary sinus catecholamine concentration during cardioaccelerator nerve stimulation in spinal dogs. Br J Pharmacol 67:283–292

    Google Scholar 

  • Céch S, Dolezel S (1967) Monoaminergic innervation of the pulmonary vessels in various laboratory animals (rat, rabbit, cat). Experientia 23:114–115

    Google Scholar 

  • Celander O, Mellander S (1955) Elimination of adrenaline and noradrenaline from the circulating blood. Nature (London) 176:973–974

    Google Scholar 

  • Celuch SM, Dubocovich ML, Langer SZ (1978) Stimulation of presynaptic β-adrenoceptors enhances 3H-noradrenaline release during nerve stimulation in the perfused cat spleen. Br J Pharmacol 63:97–109

    Google Scholar 

  • Chamley JH, Dowell JJ (1975) Specificity of nerve fiber “attraction” to autonomic effector organs in tissue culture. Exp Cell Res 90:1–7

    Google Scholar 

  • Chubb IW, de Potter WP, de Schaepdryver AF (1972) Tyramine does not release noradrenaline from splenic nerve by exocytosis. Naunyn-Schmiedeberg's Arch Pharmacol 274:281–286

    Google Scholar 

  • Cliff WJ (1976) Blood vessels. Cambridge University Press, Cambridge

    Google Scholar 

  • Cohen ML, Berkowitz B (1976) Decreased vascular relaxation in hypertension. J Pharmacol Exp Ther 196:396–406

    Google Scholar 

  • Cohen ML, Wiley KS (1978) Beta1 and beta2 receptor mechanisms in the rat jugular vein: differences between norepinephrine and isoproterenol-induced relaxation. Life Sci 23:1997–2006

    Google Scholar 

  • Coimbra A, Ribeiro-Silva A, Osswald W (1974) Fine structural and autoradiographic study of the adrenergic innervation of the dog lateral saphenous vein. Blood Vessels 11:128–144

    Google Scholar 

  • Constantine JW, Lebel W (1980) Complete blockade by phenoxybenzamine of α 1-but not α 2-vascular receptors in dogs and the effects of propranolol. Naunyn-Schmiedeberg's Arch Pharmacol 314:149–156

    Google Scholar 

  • Constantine JW, Weeks RA, McShane WK (1978) Prazosin and presynaptic α-receptors in the cardioaccelerator nerve of the dog. Eur J Pharmacol 50:51–60

    Google Scholar 

  • Dahlöf C, Åblad B, Borg KO, Ek L, Waldeck B (1975) Prejunctional inhibition of adrenergic nervous vasomotor control due to β-receptor blockade. In: Almgren O, Carlsson A, Engel J (eds) Chemical tools in catecholamine research, vol II. North-Holland, Amsterdam, pp 201–210

    Google Scholar 

  • Dahlöf C, Ljung B, Åblad B (1978) Increased noradrenaline release in rat portal vein during sympathetic nerve stimulation. Eur J Pharmacol 50:75–78

    Google Scholar 

  • Dahlöf C, Ljung B, Åblad B (1980) Pre-and postjunctional beta-adrenoceptor mediated effects on transmitter release and effector response in the isolated rat portal vein. Acta Physiol Scand 108:39–47

    Google Scholar 

  • Dahlöf C, Eriksson BM, Hjemdahl P, Åblad B (1981) Tissue contents and plasma levels of catecholamines after adrenal demedulation, chemical sympathectomy or inhibition of PNMT in rat (SHR). In: Proceedings 4th Meeting Adrenergic Mechanisms, University or Porto, Porto, p 96

    Google Scholar 

  • Dahlström A, Häggendahl J (1973) Heterogeneity of amine storage particles and the possible relation to different pools of transmitter. In: Proceedings 2nd Meeting Adrenergic Mechanisms, University of Porto, Porto, p 18

    Google Scholar 

  • De la Lande IS (1975) Adrenergic mechanisms in the rabbit ear artery. Blood Vessels 12:137–160

    Google Scholar 

  • De la Lande IS (1981) Inactivation and metabolism of catecholamines. Proceedings 4th Meeting Adrenergic Mechanisms, University of Porto, Porto, pp 75–91

    Google Scholar 

  • De la Lande IS, Jellet LB (1972) Relationship between the role of monoamine oxidase and sympathetic nerves in the vasoconstrictor response of the rabbit ear artery to norepinephrine. J Pharmacol Exp Ther 180:47–55

    Google Scholar 

  • De la Lande IS, Frewin D, Waterson JG (1967) The influence of sympathetic innervation on vascular sensitivity to noradrenaline. Br J Pharmacol 31:82–93

    Google Scholar 

  • De la Lande IS, Hodge RL, Lazner MA, Jellet LB, Waterson JG (1970) Pharmacological implications of the fate of noradrenaline in the artery wall. Circ Res 26/27 [Suppl 2]:41–48

    Google Scholar 

  • De la Lande IS, Harvey JA, Holt S (1974) Response of the rabbit coronary arteries to autonomic agents. Blood Vessels 11:319–337

    Google Scholar 

  • De la Lande IS, Parker DAS, Morris R, Irvine R, Graefe K-H (1980) Noradrenaline diffusion across the artery. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 148–160

    Google Scholar 

  • De Mey JG, Vanhoutte PM (1980) Differences of pharmacological properties of post-junctional alpha-adrenergic receptors among arteries and veins. Arch Int Pharmacodyn 244:328–329

    Google Scholar 

  • De Potter WP, Chubb IW (1971) The turnover rate of noradrenergic vesicles. Biochem J 125:375–376

    Google Scholar 

  • De Potter WP,de Schaepdryver AF, Moerman EJ, Smith AD (1969) Evidence for the release of vesicle-proteins together with noradrenaline upon stimulation of the splenic nerve. J Physiol (London) 204:102–104P

    Google Scholar 

  • Devine CE, Simpson FO (1967) The fine structure of vascular sympathetic neuromuscular contacts in the rat. Am J Anat 121:153–174

    Google Scholar 

  • Docherty JR, McGrath JC (1979) An analysis of some factors influencing α-adrenoceptor feed-back at the sympathetic junction in the heart. Br J Pharmacol 66:55–63

    Google Scholar 

  • Docherty JR, Starke K (1981) Postsynaptic α-adrenoceptor subtypes mediating nerveevoked contractions in rabbit blood vessels in vitro. Br J Pharmacol 74:803P

    Google Scholar 

  • Docherty JR, MacDonald A, McGrath JC (1979) Further sub-classification of α-adrenoceptors in the cardiovascular system, vas deferens and anococcygeus of the rat. Br J Pharmacol 67:421–422P

    Google Scholar 

  • Dolezel S (1972) Monoaminergic innervation of aorta. Folia Morphol 20:14–20

    Google Scholar 

  • Doxey JC, Everitt J (1977) Inhibitory effects of clonidine on responses to sympathetic nerve stimulation in the pithed rat. Br J Pharmacol 61:559–566

    Google Scholar 

  • Drew GM, Whiting SB (1979) Evidence for two distinct types of postsynaptic α-adrenoceptors in vascular smooth muscle in vivo. Br J Pharmacol 67:207–215

    Google Scholar 

  • Dubocovich ML, Langer SZ (1974) Negative feedback regulation of noradrenaline release by nerve stimulation in the perfused cat's spleen: differences in potency of phenoxybenzamine in blocking the pre-and post-synaptic receptors. J Physiol (London) 237:505–519

    Google Scholar 

  • Dubocovich ML, Langer SZ (1976) Influence of the frequency of nerve stimulation on the metabolism of 3H-norepinephrine released from the perfused cat spleen: differences observed during and after the period of stimulation. J Pharmacol Exp Ther 198:83–101

    Google Scholar 

  • Duckles SP (1980) Functional activity of the noradrenergic innervation of large cerebral arteries. Br J Pharmacol 69:193–199

    Google Scholar 

  • Duckles SP, Rapaport R (1979) Release of endogenous norepinephrine from a rabbit cerebral artery. J Pharmacol Exp Ther 211:219–224

    Google Scholar 

  • Eckert E, Henseling M, Gescher A, Trendelenburg U (1976a) Stereo-selectivity of the distribution of labelled noradrenaline in rabbit aortic strips after inhibition of the noradrenaline metabolizing enzymes. Naunyn-Schmiedeberg's Arch Pharmacol 292:219–229

    Google Scholar 

  • Eckert E, Henseling M, Trendelenburg U (1976b) The effect of inhibitors of extraneuronal uptake on the distribution of 3H-(±)-noradrenaline in nerve-free rabbit aortic strips. Naunyn-Schmiedeberg's Arch Pharmacol 293:115–127

    Google Scholar 

  • Edvinsson L, Owman C (1974) Pharmacological characterization of adrenergic alpha and beta receptors mediating vasomotor response of cerebral arteries in vitro. Circ Res 35:835–849

    Google Scholar 

  • Ehinger B, Falck B, Sporrong B (1967) Adrenergic fibers to the heart and to peripheral vessels. Bibl Anat 8:35–47

    Google Scholar 

  • Endo T, Starke K, Bangerter A, Taube HD (1977) Presynaptic receptor system on the noradrenergic neurons of the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 296:229–247

    Google Scholar 

  • Fain JN, Garcia-Sainz JA (1978) Role of phosphatidylinositol turnover in alpha1 and of adenylate cyclase inhibition in alpha2 effects of catecholamines. Life Sci 26:1183–1194

    Google Scholar 

  • Farnebo L-O, Hamberger B (1971) Drug-induced changes in the release of 3H-noradrenaline from field stimulated rat iris. Br J Pharmacol 43:97–106

    Google Scholar 

  • Fillenz M (1970) Innervation of pulmonary and bronchial blood vessels of the dog. J Anat (London) 106:449–461

    Google Scholar 

  • Fillenz M, West DP (1976) Fate of noradrenaline storage vesicles after release. Neurosci Lett 2:285–287

    Google Scholar 

  • FitzGerald GA, Watkins J, Dollery CT (1981) Regulation of norepinephrine release by peripheral α 2-receptor stimulation. Clin Pharmacol Ther 29:160–167

    Google Scholar 

  • Flavahan NA, McGrath JC (1981) An analysis of α 1-and α 2-adrenoceptor mediated pressor effects of adrenaline. Br J Pharmacol 72:519P

    Google Scholar 

  • Folkow B, Neil E (1971) Circulation. Oxford University Press, New York

    Google Scholar 

  • Franco-Morselli R, Elghozi JL, Joly E, di Giulio S, Meyer P (1977) Increased plasma adrenaline in benign essential hypertension. Br Med J 2:1251–1254

    Google Scholar 

  • Fredholm BB, Rosell S (1968) Effects of adrenergic blocking agents on lipid mobilization from canine subcutaneous adipose tissue after sympathetic nerve stimulation. J Pharmacol Exp Ther 159:1–7

    Google Scholar 

  • Fried G, Lagercrantz H, Hökfelt T (1979) Small noradrenergic vesicles from vas deferens of castrated rats: a comparison with large noradrenergic vesicles. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon, New York, pp 349–351

    Google Scholar 

  • Furchgott RF (1967) The pharmacological differentiation of adrenergic receptors. Ann NY Acad Sci 139:553–570

    Google Scholar 

  • Furchgott RF (1973) Interactions of drugs at the receptor level. In: Proceedings 2nd Meeting Adrenergic Mechanisms, University of Porto, Porto, pp 79–89

    Google Scholar 

  • Furchgott RF (1976) Postsynaptic adrenergic receptor mechanisms in vascular smooth muscle. In: Bevan JA, Burnstock G, Johansson B, Maxwell RA, Nedergaard OA (eds) Vascular neuroeffector mechanisms. Karger, Basel, pp 131–142

    Google Scholar 

  • Furchgott RF, Sanchez-Garcia P (1968) Effects of inhibition of monoamine oxidase on the actions and interactions of norepinephrine, tyramine and other drugs on guinea-pig left atrium. J Pharmacol Exp Ther 163:98–122

    Google Scholar 

  • Garrett J, Branco D (1977) Uptake and metabolism of noradrenaline by the mesenteric arteries of the dog. Blood Vessels 14:43–54

    Google Scholar 

  • Garrett J, Branco D (1978) Different behaviour of endogenous noradrenaline in two vessels of the dog. In: Azevedo I, Guimarães S, Moura D, Paiva MQ (eds) Proceedings 3th Meeting Adrenergic Mechanisms, University of Porto, Porto, p 69

    Google Scholar 

  • Garrett J, Malafaya-Baptista A, Osswald W (1966) Effects of pronethalol on the cardiovascular actions of catecholamines during blockade by phenoxybenzamine. Br J Pharmacol 27:459–467

    Google Scholar 

  • Geffen LB, Livett BG, Rush RA (1969) Immunological localization of chromogranins in sheep sympathetic neurones and their release by nerve impulse. J Physiol (London) 204:58–59P

    Google Scholar 

  • Gero J, Gerova M (1971) In vivo studies of sympathetic control of vessels of different functions. In: Bevan JA, Furchgott RF, Maxwell RA, Somlyo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger, Basel, pp 86–94

    Google Scholar 

  • Gillespie JS (1976) Extraneuronal uptake of catecholamines in smooth muscle and connective tissue. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven, New York, pp 325–354

    Google Scholar 

  • Gillis CN (1971) Inactivation of norepinephrine released by electrical stimulation of rabbit aorta in a gaseous medium. In: Bevan JA, Furchgott RF, Maxwell RA, Somlyo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger, Basel, pp 47–52

    Google Scholar 

  • Gillis CN (1980) Metabolism of vasoactive hormones by pulmonar vascular endothelium: possible functional significance. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 304–314

    Google Scholar 

  • Gillis CN, Roth JA (1976) Pulmonary disposition of vasoactive hormones. Biochem Pharmacol 25:2547–2553

    Google Scholar 

  • Glaubiger G, Tsai BS, Lefkowitz RJ, Weiss B, Johnson EM Jr (1978) Chronic guanethidine treatment increases cardiac β-adrenergic receptors. Nature (London) 273:240–241

    Google Scholar 

  • Glick G, Epstein SE, Wechsler AS, Braunwald E (1967) Physiological differences between the effects of neuronally released and bloodborn norepinephrine on beta adrenergic receptors in the arterial bed of the dog. Circ Res 21:217–227

    Google Scholar 

  • Goldberg LI, Toda N (1975) Dopamine induced relaxation of isolated canine renal, mesenteric and femoral arteries contracted with prostaglandin F. Circ Res 36 [Suppl I]: 97–102

    Google Scholar 

  • Goldberg LI, Yeh BK (1969) Specific block of dopamine receptors in the renal vascular bed by chlorpromazine. In: 4th Int Congr Pharmacol (Abstr), p 359

    Google Scholar 

  • Goldberg LI, Volkman PH, Kohli JD (1978) A comparison of the vascular dopamine receptor with other dopamine receptors. Ann Rev Pharmacol Toxicol 18:57–79

    Google Scholar 

  • Gryglewski R, Vane JR (1970) The inactivation of noradrenaline and isoprenaline in dogs. Br J Pharmacol 39:573–584

    Google Scholar 

  • Guimarães S (1969) Alpha excitatory, alpha inhibitory and beta inhibitory adrenergic receptors in the guinea-pig stomach. Arch Int Pharmacodyn 179:188–201

    Google Scholar 

  • Guimarães S (1975) Further study of the adrenoceptors of the saphenous vein of the dog: influence of factors which interfere with the concentrations of agonists at the receptor level. Eur J Pharmacol 34:9–19

    Google Scholar 

  • Guimarães S (1982) Two adrenergic biophases in blood vessels. Trends in Pharmacological Sciences 3:159–161

    Google Scholar 

  • Guimarães S, Brandão F (1973) Comparison between the effects produced by chronic denervation and by cocaine on the sensitivity to and on the disposition of noradrenaline in isolated spleen strips. Naunyn-Schmiedeberg's Arch Pharmacol 277:163–174

    Google Scholar 

  • Guimarães S, Paiva MQ (1977a) Differential influence of block of catechol-O-methyl transferase (COMT) activity and of neuronal uptake on α-and β-adrenergic effects. J Pharm Pharmacol 29:502–503

    Google Scholar 

  • Guimarães S, Paiva MQ (1977b) The role played by extraneuronal system in the disposition of noradrenaline and adrenaline in vessels. Naunyn-Schmiedeberg's Arch Pharmacol 296:279–287

    Google Scholar 

  • Guimarães S, Paiva MQ (1981a) Are β-agonists able to occupy β-adrenoceptors without causing effect? A study on the saphenous vein of the dog. In: Proceedings 4th Meeting Adrenergic Mechanisms, University of Porto, Porto, p 37

    Google Scholar 

  • Guimarães S, Paiva MQ (1981b) Two distinct adrenoceptor-biophases in the vasculature: one for α-and the other for β-agonists. Naunyn-Schmiedeberg's Arch Pharmacol 316:195–199

    Google Scholar 

  • Guimarães S, Paiva MQ (1981c) Two different biophases for adrenaline released by electrical stimulation or tyramine from the sympathetic nerve endings of the dog saphenous vein. Naunyn-Schmiedeberg's Arch Pharmacol 316:200–204

    Google Scholar 

  • Guimarães S, Azevedo I, Cardoso W, Oliveira MC (1975) Relation between the amount of smooth muscle of venous tissue and the degree of supersensitivity to isoprenaline caused by inhibition of catechol-O-methyl transferase. Naunyn-Schmiedeberg's Arch Pharmacol 286:401–412

    Google Scholar 

  • Guimarães S, Brandão F, Paiva MQ (1978) A study of the adrenoceptor-mediated feedback mechanisms by using adrenaline as a false transmitter. Naunyn-Schmiedeberg's Arch Pharmacol 305:185–188

    Google Scholar 

  • Guimarães S, Paiva MQ, Moura D (1982) Evidence for the existence of distinct biophases for α-and β-adrenoceptors in the vascular tissue. J Cardiovasc Pharmacol 4 [Suppl I]:58–62

    Google Scholar 

  • Gulati OD, Gokhale SD, Udwadia BP (1965) Antagonism of adrenergic blockade by pronethalol. Arch Int Pharmacodyn 156:389–397

    Google Scholar 

  • Guth L (1968) “Trophic” influences of nerve on muscle. Physiol Rev 48:645–687

    Google Scholar 

  • Gutmann E (1976) Neurotrophic relations. Ann Rev Physiol 38:177–216

    Google Scholar 

  • Hamberger B, Norberg KA, Olson L (1967) Extraneuronal binding of catecholamines and 3,4-dihydroxyphenylalanine (dopa) in salivary glands. Acta Physiol Scand 69:1–12

    Google Scholar 

  • Hamilton CA, Reid JL (1980) Postsynaptic location of α 2-adrenoceptors in vascular smooth muscle. Br J Pharmacol 70:63P

    Google Scholar 

  • Hamilton CA, Reid JL (1981) The effect of 6-hydroxydopamine on rabbit peripheral alpha adrenoceptors in vivo and in vitro. Br J Pharmacol 72:119P

    Google Scholar 

  • Hamilton FN, Fiegl EO (1976) Coronary vascular sympathetic beta-receptor innervation. Am J Physiol 230:1569–1576

    Google Scholar 

  • Hancock A, DeLean AL, Lefkowitz RJ (1979) Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: application of a computerized model fitting technique. Mol Pharmacol 16:1–9

    Google Scholar 

  • Hartman BK (1973) The innervation of cerebral blood vessels by central noradrenergic neurons. In: Usdin E, Snyder SH (eds) Frontiers in catecholamine research. Pergamon, New York, pp 91–96

    Google Scholar 

  • Häusler G (1975) The importance of the presynaptic α-adrenergic regulation of noradrenaline release from vascular nerves in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 287:R19

    Google Scholar 

  • Head RJ, Stitzel RE, De la Lande IS, Johnson SM (1977) The effect of chronic denervation on the activities of monoamine oxidase and catechol-O-methyl transferase and on the contents of noradrenaline and adenosine triphosphate in the rabbit ear artery. Blood Vessels 14:229–239

    Google Scholar 

  • Head RJ, De la Lande IS, Irvine RJ, Johnson SM (1980) Uptake and O-methylation of isoprenaline in the rabbit ear artery. Blood Vessels 17:229–245

    Google Scholar 

  • Head RJ, Hempstead J, Berkowitz BA (1982) Catecholamines in the vasculature of the rat and rabbit: dopamine, norepinephrine, epinephrine. Blood Vessels 19:135–147

    Google Scholar 

  • Hedqvist P (1974) Effect of prostaglandins and prostaglandin synthesis inhibitors on norepinephrine release from vascular tissue. In: Robinson HJ, Vane JR (eds) Prostaglandin synthetase inhibitors. Raven, New York, pp 303–309

    Google Scholar 

  • Hedqvist P, Fredholm BB (1976) Effects of adenosine on adrenergic neurotransmission; prejunctional inhibition and postjunctional enhancement. Naunyn-Schmiedeberg's Arch Pharmacol 293:217–223

    Google Scholar 

  • Henseling M (1978) Contribution by neuronal and extraneuronal mechanisms to the elimination of noradrenaline from the extracellular space (rabbit aorta). Naunyn-Schmiedeberg's Arch Pharmacol 302:R50

    Google Scholar 

  • Henseling M (1980) Distribution and metabolic fate of 3H-noradrenaline in rabbit aorta and their influence on muscle contraction. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 160–170

    Google Scholar 

  • Henseling M (1981) The effect of inhibition of uptake2 on the stimulation-evoked overflow of noradrenaline in the rabbit aorta. Naunyn-Schmiedeberg's Arch Pharmacol 316:R54

    Google Scholar 

  • Henseling M, Trendelenburg U (1978) Stereoselectivity of the accumulation and metabolism of noradrenaline in rabbit aortic strips. Naunyn-Schmiedeberg's Arch Pharmacol 302:195–206

    Google Scholar 

  • Henseling M, Eckert E, Trendelenburg U (1976a) The distribution of 3H-(±)-noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes. Naunyn-Schmiedeberg's Arch Pharmacol 292:205–217

    Google Scholar 

  • Henseling M, Eckert E, Trendelenburg U (1976b) The effect of cocaine on the distribution of labelled noradrenaline in rabbit aortic strips and on efflux of radioactivity from the strips. Naunyn-Schmiedeberg's Arch Pharmacol 292:231–241

    Google Scholar 

  • Hermsmeyer K, Aprigliano O (1980) Cellular mechanisms of the neurotrophic influence in vascular muscle. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 113–119

    Google Scholar 

  • Hertting G (1964) The fate of 3H-isoproterenol in the rat. Biochem Pharmacol 13:1119–1128

    Google Scholar 

  • Hirst GDS, Neild TO (1980) Evidence for two populations of excitatory receptors for noradrenaline on arteriolar smooth muscle. Nature (London) 283:767–768

    Google Scholar 

  • Hoffbrand BI, Forsyth RP (1973) Regional blood flow changes during norepinephrine, tyramine and methoxamine infusions in the unanesthetized Rhesus monkey. J Pharmacol Exp Ther 184:656–661

    Google Scholar 

  • Hoffman BB, Lefkowitz RJ (1980) Radioligand binding studies of adrenergic receptors: new insights into molecular and physiological regulations. Ann Rev Pharmacol Toxicol 20:581–608

    Google Scholar 

  • Hoffman BB, De Lean A, Wood CL, Schocken DD (1979) Alpha-adrenergic receptor subtypes: quantitative assessment by ligand binding. Life Sci 24:1739–1745

    Google Scholar 

  • Holman ME (1969) Electrophysiology of vascular smooth muscle. Ergebn Physiol 61:137–177

    Google Scholar 

  • Holman ME, Karby CB, Suthers MB, Wilson JAF (1968) Some properties of the smooth muscle of rabbit portal vein. J Physiol (London) 196:111–132

    Google Scholar 

  • Holtz P, Credner K (1942) Die enzymatische Entstehung von Oxytyramin im Organismus und die physiologische Bedeutung der Dopadecarboxylase. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 200:356–388

    Google Scholar 

  • Holtz P, Heise R, Lüdtke K (1938) Fermentativer Abbau von L-Dioxyphenylalanin (DOPA) durch die Niere. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 191:87–118

    Google Scholar 

  • Holtz P, Stock K, Westermann E (1963) Über die Blutdruckwirkung des Dopamin. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 246:133–146

    Google Scholar 

  • Holtz P, Stock K, Westermann E (1964) Pharmakologie des Tetrahydropapaverolins und seine Entstehung aus Dopamin. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 248:387–405

    Google Scholar 

  • Holzbauer M, Sharman DF (1972) The distribution of catecholamines in vertebrates. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, pp 111–185)

    Google Scholar 

  • Hornykiewicz O (1958) The action of dopamine on the arterial pressure of the guinea pig. Br J Pharmacol 13:91–94

    Google Scholar 

  • Hughes J (1972) Evaluation of mechanisms controlling the release and inactivation of the adrenergic transmitter in the rabbit portal vein and vas deferens. Br J Pharmacol 44:472–491

    Google Scholar 

  • Hughes J, Roth RH (1969) Enhanced release of transmitter during sympathetic nerve stimulation in the presence of angiotensin. Br J Pharmacol 37:516–517P

    Google Scholar 

  • Hughes J, Roth RH (1974) Variation in noradrenaline output with changes in stimulus frequency and train length: the role of different noradrenaline pools. Br J Pharmacol 51:373–381

    Google Scholar 

  • Hui KKP, Conolly ME (1981) Increased numbers of beta receptors in orthostatic hypotension due to autonomic dysfunction. N Engl J Med 304:1473–1476

    Google Scholar 

  • Hume WR (1973) Cholinergic factors in the maintenance of vascular tone. Ph D Thesis, University of Adelaide

    Google Scholar 

  • Ikeda M (1970) Adrenergic innervation of the ductus arteriosus of the fetal lamb. Experientia 26:525–526

    Google Scholar 

  • Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, Cambridge

    Google Scholar 

  • Iversen LL (1971) Role of transmitter uptake in synaptic neurotransmission. Br J Pharmacol 41:571–591

    Google Scholar 

  • Jakobs KH (1979) Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol Cell Pharmacol 16:147–156

    Google Scholar 

  • Jakobs KH, Saur W, Schultz G (1978) Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett 85:167–170

    Google Scholar 

  • Jarrott B, Langer SZ (1971) Changes in monoamine oxidase and catechol-O-methyl transferase activities after denervation of the nictitating membrane of the cat. J Physiol (London) 212:549–559

    Google Scholar 

  • Junod AF (1975) Metabolism, production and release of hormones and mediators in the lung. Am Rev Respir Dis 112:93–108

    Google Scholar 

  • Kalsner S (1972) Differential activation of the inner and outer muscle cell layers of the rabbit ear artery. Eur J Pharmacol 20:122–124

    Google Scholar 

  • Kalsner S (1975) Role of extraneuronal mechanisms in the termination of contractile responses to amines in the vascular tissue. Br J Pharmacol 53:267–277

    Google Scholar 

  • Kalsner S (1976) The lack of effect of oxytetracycline on responses to sympathetic nerve stimulation and catecholamines in vascular tissues. Br J Pharmacol 58:261–266

    Google Scholar 

  • Kalsner S (1977) Termination of effector responses to agonists: an analysis of agonist disposition mechanisms. Can J Pharmacol 55:316–330

    Google Scholar 

  • Kalsner S (1979a) Single pulse stimulation of guinea-pig vas deferens and the presynaptic receptor hypothesis. Br J Pharmacol 66:343–349

    Google Scholar 

  • Kalsner S (1979b) Termination of agonist action on autonomic receptor. In: Kalsner S (ed) Trends in autonomic pharmacology, vol I. Urban & Schwarzenberg, Baltimore, pp 265–287

    Google Scholar 

  • Kalsner S, Nickerson M (1969) Disposition of norepinephrine and epinephrine in vascular tissue by the technique of oil immersion. J Pharmacol Exp Ther 165:152–165

    Google Scholar 

  • Keatinge WR (1966) Electrical and mechanical responses of arteries to stimulation of sympathetic nerves. J Physiol (London) 185:701–715

    Google Scholar 

  • Keatinge WR, Torrie C (1976) Action of sympathetic nerves on inner and outer muscle of sheep carotid artery, and effect of pressure on nerve distribution. J Physiol (London) 257:699–712

    Google Scholar 

  • Kebabian JW, Cote TE (1981) Dopamine receptor and cyclic AMP: a decade of progress. Trends in Pharmacological Sciences 2:69–71

    Google Scholar 

  • Kenakin TP (1980) On the influence of agonist concentration-gradients within isolated tissues. Increased maximal responses of rat vasa deferentia to (—)-noradrenaline after blockade of neuronal uptake. J Pharm Pharmacol 32:833–838

    Google Scholar 

  • Kirpekar SM, Puig M (1971) Effect of flow-stop on noradrenaline release from normal spleens and spleens treated with cocaine, phentolamine or phenoxybenzamine. Br J Pharmacol 43:359–369

    Google Scholar 

  • Kobinger W, Pichler L (1980) Investigation into different types of post-and presynaptic α-adrenoceptors at cardiovascular sites in rats. Eur J Pharmacol 65:393–402

    Google Scholar 

  • Kobinger W, Lillie C, Pichler L (1980) Central cardiovascular α-adrenoceptors. Relation to peripheral receptors. Circ Res [Suppl] 67:I12–I25

    Google Scholar 

  • Kurahashi K, Rawlow A, Trendelenburg U (1980) A mathematical model representing the extraneuronal O-methylating system of the perfused rat heart. Naunyn-Schmiedeberg's Arch Pharmacol 311:17–32

    Google Scholar 

  • Lands AM, Luduena FP, Buzzo HJ (1967a) Differentiation of receptors responsive to isoproterenol. Life Sci 6:2241–2249

    Google Scholar 

  • Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr (1967b) Differentiation of receptor systems activated by sympathomimetic amines. Nature (London) 214:597–598

    Google Scholar 

  • Lang J (1974) Feinstruktur der Arterienwände. Verh Dtsch Ges Kreislaufforsch 40:1–14

    Google Scholar 

  • Langer SZ (1970) The metabolism of 3H-noradrenaline released by electrical stimulation from the isolated nictitating membrane of the cat and from the vas deferens of the rat. J Physiol (London) 208:515–546

    Google Scholar 

  • Langer SZ (1973) The regulation of transmitter release elicited by nerve stimulation through a presynaptic feedback mechanism. In: Usdin E, Snyder S (eds) Frontiers in catecholamine research. Pergamon, New York, pp 543–549

    Google Scholar 

  • Langer SZ (1974a) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23:1793–1800

    Google Scholar 

  • Langer SZ (1974b) Selective metabolic pathways for noradrenaline in the peripheral and in the central nervous system. Med Biol 57:372–383

    Google Scholar 

  • Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60:481–497

    Google Scholar 

  • Langer SZ (1979) Presynaptic adrenoceptors and regulation of release. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon, New York, pp 59–85

    Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    Google Scholar 

  • Langer SZ, Enero MA (1974) The potentiation of responses to adrenergic nerve stimulation in the presence of cocaine: its relationship to the metabolic fate of released norepinephrine. J Pharmacol Exp Ther 191:431–443

    Google Scholar 

  • Langer SZ, Shepperson NB (1981a) Evaluation of the selectivity of M-7 for α1 and α2-adrenoceptors in vitro. Br J Pharmacol 74:841P

    Google Scholar 

  • Langer SZ, Shepperson NB (1981b) Antagonism of alpha-adrenoceptor mediated contractions of the isolated saphenous vein of the dog by diltiazem and verapamil. Br J Pharmacol 74:942P

    Google Scholar 

  • Langer SZ, Adler E, Enero MA, Stefano FJE (1971) The role of alpha receptor in regulating noradrenaline overflow by nerve stimulation. In: Proceedings XXVth International Congress of Physiological Sciences. Munich, p 335

    Google Scholar 

  • Langer SZ, Enero MA, Adler-Graschinsky E, Dubocovich ML, Celuch SM (1975) Presynaptic regulatory mechanisms for noradrenaline release by nerve stimulation. In: Davies DS, Reid JL (eds) Central action of drugs in blood pressure regulation. Pitman Medical, London, pp 133–150

    Google Scholar 

  • Langer SZ, Massingham R, Shepperson NB (1981) Differential sensitivity to prazosin blockade of endogenously released and exogenously administered noradrenaline: Possible relationship to the synaptic location of α 1-and the extrasynaptic location of α 2-adrenoceptors in dog vascular smooth muscle. Br J Pharmacol 72:123P

    Google Scholar 

  • Leclerc G, Rouot B, Velly J, Schwartz J (1981) β-Adrenergic receptor subtypes. Trends in Pharmacological Sciences 2:18–20

    Google Scholar 

  • Lee TJF (1977) Sympathetic innervation of rabbit basilar artery: neuromuscular relationship. Fed Proc 36:1036

    Google Scholar 

  • Lever JD, Mumtazyddin A, Irvine G (1965a) Neuromuscular and intercellular relationship in the coronary arterioles. A morphological and quantitative study by light and electron microscopy. J Anat (London) 99:829–840

    Google Scholar 

  • Lever JD, Graham JDP, Irvine G, Chick WJ (1965b) The vesiculated axons in relation to arteriolar smooth muscle in the pancreas. A fine structural and quantitative study. J Anat (London) 99:299–313

    Google Scholar 

  • Levi-Montalcini R (1972) The morphological effects of immunosympathectomy. In: Steiner G, Schönbaum E (eds) Immunosympathectomy. Elsevier, Amsterdam, pp 55–79

    Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1968) The nerve growth factor. Physiol Rev 48:534–569

    Google Scholar 

  • Levin JA (1974) The uptake and metabolism of 3H-l-and 3H-dl-norepinephrine by intact rabbit aorta and by isolated adventitia and media. J Pharmacol Exp Ther 190:210–226

    Google Scholar 

  • Levin JA, Wilson SE (1977) The effect of monoamine oxidase and catechol-O-methyl transferase inhibitors on the accumulation and metabolism of 1-3H-norepinephrine by the adventitia and media of rabbit aorta. J Pharmacol Exp Ther 203:598–609

    Google Scholar 

  • Limas C, Limas CJ (1978) Reduced number of β-adrenergic receptors in myocardium of spontaneously hypertensive rats. Biochem Biophys Res Commun 83:710–714

    Google Scholar 

  • Lindmar R, Löffelholz K, Muscholl E (1968) A muscarinic mechanism inhibiting the release of noradrenaline from peripheral adrenergic nerve fibers by nicotinic drugs. Br J Pharmacol 32:280–294

    Google Scholar 

  • Ljung B (1976) Physiological patterns of neuroeffector control mechanisms. In: Bevan JA, Burnstock G, Johansson B, Maxwell RA, Nedergaard OA (eds) Vascular neuroeffector mechanisms. Karger, Basel, pp 143–155

    Google Scholar 

  • Ljung B, Bevan JA, Su C (1973) Evidence for uneven alpha-receptor distribution in rat portal vein. Circ Res 32:556–563

    Google Scholar 

  • Ljung B, Bevan JA, Pegram BL, Purdy RE, Su M (1975) Vasomotor nerve control of isolated arteries and veins. Acta Physiol Scand 94:506–516

    Google Scholar 

  • Löffelholz K, Muscholl E (1969) A muscarinic inhibition of the noradrenaline release evoked by postganglionic sympathetic nerve stimulation. Naunyn-Schmiedeberg's Arch Pharmacol 265:1–15

    Google Scholar 

  • Lokhandwala MF, Buckley JP (1976) Effect of presynaptic α-adrenoceptor blockade on responses to cardiac nerve stimulation in anesthetized dogs. Eur J Pharmacol 40:183–186

    Google Scholar 

  • Lowe MC (1979) Autoradiographic localization of monoamine oxidase in cardiovascular tissues. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon, New York, pp 1351–1353

    Google Scholar 

  • Lowe MC, Creveling CR (1979) Immunocytochemical localization of catechol-O-methyltransferase in cardiovascular tissues. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and chemical frontiers. Pergamon, New York, pp 219–221

    Google Scholar 

  • Mack F, Bönisch H (1979) Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn-Schmiedeberg's Arch Pharmacol 310:1–9

    Google Scholar 

  • MacMillan WH (1959) A hypothesis concerning the effects of cocaine on the action of sympathomimetic amines. Br J Pharmacol 14:385–391

    Google Scholar 

  • Madjar H, Docherty JR, Starke K (1980) An examination of pre-and postsynaptic α-adrenoceptors in the autoperfused rabbit hindlimb. J Cardiovasc Pharmacol 2:619–627

    Google Scholar 

  • Majewski H, Rand MJ (1981) Adrenaline-mediated hypertension: a clue to the antihypertensive effect of β-adrenoceptor blocking drugs? Trends in Pharmacological Sciences 2:24–26

    Google Scholar 

  • Majewski H, Tung L-H, Rand MJ (1981) Adrenaline-induced hypertension in rats. J Cardiovasc Pharmacol 3:179–185

    Google Scholar 

  • Marsden CA, Broch OJ Jr, Guldberg HC (1971) Catechol-O-methyltransferase and monoamine oxidase activities in rat submaxillary gland: effects of ligation, sympathectomy and some drugs. Eur J Pharmacol 15:335–342

    Google Scholar 

  • Maxwell RA, Eckhardt SB, Wastila WB (1968) Concerning the distribution of endogenous norepinephrine in the adventitial and media-intimal layers of the rabbit aorta and the capacity of these layers to bind tritiated norepinephrine. J Pharmacol Exp Ther 161:34–39

    Google Scholar 

  • Mayer HE, Abboud FM, Ballard DR, Eckstein JW (1968) Catecholamines in arteries and veins of the foreleg of the dog. Circ Res 23:653–661

    Google Scholar 

  • McCulloch MW, Rand MJ, Story DF (1972) Inhibition of 3H-noradrenaline release from sympathetic nerves of guinea-pig atria by a presynaptic α-adrenoceptor mechanism. Br J Pharmacol 46:523–524P

    Google Scholar 

  • McCulloch MW, Rand MJ, Story DF (1973) Evidence for dopaminergic mechanisms for modulation of adrenergic transmission in the rabbit ear artery. Br J Pharmacol 49:41P

    Google Scholar 

  • McGrath MA (1977) 5-Hydroxytryptamine and neurotransmitter release in canine vascular smooth muscle by histamine. Circ Res 41:428–434

    Google Scholar 

  • McGrath MA, Shepherd JT (1976) Inhibition of adrenergic neurotransmission in canine vascular smooth muscle by histamine. Circ Res 39:566–573

    Google Scholar 

  • Michel T, Hoffmann BB, Lefkowitz RJ (1980) Differential regulation of the α 2-adrenergic receptors by Na+ and guanine nucleotides. Nature (London) 288:709–711

    Google Scholar 

  • Minneman KP, Dibner MD, Wolfe PB (1979) β 1-and β 2-adrenergic receptors are independently regulated. Science 204:866–868

    Google Scholar 

  • Moran NC (1966) Pharmacological characterization of adrenergic receptors. Pharmacol Rev 18:503–512

    Google Scholar 

  • Moran NC, Perkins ME (1958) Adrenergic blockade of the mammalian heart by a dichloro analogue of isoproterenol. J Pharmacol Exp Ther 124:223–244

    Google Scholar 

  • Moreira MG, Osswald W (1965) Pronethalol-induced reversal of adrenergic vasodepression. Nature (London) 20:1006–1007

    Google Scholar 

  • Mukerjee C, Caron MG, Lefkowitz RJ (1975) Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of β-adrenergic receptor binding sites. Proc Natl Acad Sci USA 72:1945–1949

    Google Scholar 

  • Muldoon SM, Vanhoutte PM, Tyce G (1978) Norepinephrine metabolism in canine saphenous vein: prevalence of glycol metabolites. Am J Physiol 234:H235–H243

    Google Scholar 

  • Muldoon SM, Tyce GM, Mayer TP, Rorie DK (1979) High pressure liquid chromatographic analysis of endogenous norepinephrine (NE) released from canine saphenous veins. In: Usdin E, Kopin EJ, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon, New York, pp 1488–1490

    Google Scholar 

  • Muscholl E (1972) Adrenergic false transmitters. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, pp 618–660)

    Google Scholar 

  • Nakaki T, Nakada T, Kato R (1980) α 2-Adrenoceptors modulating insulin release from isolated pancreatic islets. Naunyn-Schmiedeberg's Arch Pharmacol 313:151–154

    Google Scholar 

  • Nedergaard OA, Bevan JA (1971) Neuronal and extraneuronal uptake of adrenergic transmitter in the blood vessel. In: Bevan JA, Fuchgott RF, Maxwell RA, Somlyo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger, Basel, pp 22–34

    Google Scholar 

  • Nedergaard OA, Schrold J (1977) The mechanism of action of nicotine on vascular adrenergic neuroeffector transmission. Eur J Pharmacol 42:315–329

    Google Scholar 

  • Nedergaard OA, Schrold J (1980) Effect of neuronal and extraneuronal uptake inhibitors on the fate of 3H-noradrenaline released spontaneously and by electrical field stimulation of rabbit isolated aorta and adventitia. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 170–176

    Google Scholar 

  • Nicholas TE, Strum JM, Angelo LS, Junod AF (1974) Site and mechanism of uptake of 3H-l-norepinephrine by isolated perfused rat lungs. Circ Res 35:670–680

    Google Scholar 

  • Osswald W (1960) Reversal of adrenergic vasodepression. Arch Int Pharmacodyn 126:346–358

    Google Scholar 

  • Osswald W (1976) Transmitter disposition mechanisms. In: Bevan JA, Burnstock G, Johansson B, Maxwell RA, Nedergaard OA (eds) Vascular neuroeffector mechanisms. Karger, Basel, pp 123–130

    Google Scholar 

  • Osswald W (1978) Disposition of vasoconstrictor agonists. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 89–97

    Google Scholar 

  • Osswald W (1979) Inactivation of the sympathetic neurotransmitter (in Portuguese). Bol Soc Port Cardiol 17 [Suppl 2]:399–407

    Google Scholar 

  • Osswald W, Branco D (1973) The effects of drugs and denervation on removal and accumulation of noradrenaline in the perfused hind-limb of the dog. Naunyn-Schmiedeberg's Arch Pharmacol 277:175–190

    Google Scholar 

  • Osswald W, Guimarães S, Coimbra A (1971) The termination of action of catecholamines in the isolated venous tissue of the dog. Naunyn-Schmiedeberg's Arch Pharmacol 269:15–31

    Google Scholar 

  • Osswald W, Garrett J, Guimarães S (1975) Extraneuronal uptake and metabolism in dog vascular structures. In: Tuomisto J, Paasonen K (eds) Proceedings 6th International Congress Pharmacology, vol 2 (Neurotransmission), Helsinki, pp 149–158

    Google Scholar 

  • Owman C (1964) Sympathetic nerves probably storing two types of monoamines in the rat pineal gland. Int J Neuropharmacol 3:105–112

    Google Scholar 

  • Owman C, Edvinsson L, Hardebo JE (1980) Amine mechanisms and contractile properties of the cerebral microvascular endothelium. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 277–290

    Google Scholar 

  • Paiva MQ, Guimarães S (1976) Influence of blockade of extraneuronal uptake on the affinity of some amines for the β-adrenergic receptors of guinea-pig trachea and atria. Arch Farmacol Toxicol 2:185–192

    Google Scholar 

  • Paiva MQ, Guimarães S (1978) A comparative study of the uptake and metabolism of noradrenaline and adrenaline by the isolated saphenous vein of the dog. Naunyn-Schmiedeberg's Arch Pharmacol 303:221–228

    Google Scholar 

  • Paiva MQ, Guimarães S (1980) The oil immersion technique for studying the disposition of drugs inducing relaxation: influence of U-0521 and hydrocortisone on the disposition of isoprenaline. J Pharm Pharmacol 32:868–869

    Google Scholar 

  • Pascual R, Bevan JA (1978) Characteristics of contractile response of rabbit aorta strip to norepinephrine entering through the adventitia and through the intima. Proc West Pharmacol Soc 21:95–98

    Google Scholar 

  • Pascual R, Bevan JA (1980) Evidence that changes in vascular tone may be initiated from the intima of the rabbit aorta. In: Bevan JA, Godfraind T, Maxwell RA, Vanhoutte PM (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 300–304

    Google Scholar 

  • Paton DM (1973) Mechanism of efflux of noradrenaline from adrenergic nerves in rabbit aorta. Br J Pharmacol 49:614–627

    Google Scholar 

  • Paton DM (1976a) Characteristics of uptake of noradrenaline by adrenergic neurons. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven, New York, pp 49–66

    Google Scholar 

  • Paton DM (1976b) Characteristics of efflux of noradrenaline from adrenergic neurons. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven, New York, pp 155–174

    Google Scholar 

  • Paton DM (1979) Release induced by alterations in extracellular potassium and sodium and by veratridine and scorpion venom. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon, New York, pp 321–332

    Google Scholar 

  • Paton WDM (1960) Discussion. In: Vane JR, Wolstenholme GEW, O'Connor M (eds) Ciba Foundation Symposium on catecholamines. Churchill, London, pp 124–127

    Google Scholar 

  • Pluchino S, Trendelenburg U (1968) The influence of denervation and of decentralization on the alpha and beta effects of isoproterenol on the nictitating membrane of the pithed cat. J Pharmacol Exp Ther 163:257–265

    Google Scholar 

  • Powell CE, Slater IH (1958) Blocking of inhibitory adrenergic receptors by a dichloro analogue of isoproterenol. J Pharmacol Exp Ther 122:480–488

    Google Scholar 

  • Powis G (1973) Binding of catecholamines to connective tissue and the effect upon the responses of blood vessels to noradrenaline and to nerve stimulation. J Physiol (London) 234:145–162

    Google Scholar 

  • Rabin RA, Wolfe BB, Dibner MD, Zahniser NR, Melchior C, Molinoff PB (1980) Effects of ethanol administration and withdrawal on neurotransmitter receptor systems in C57 mice. J Pharmacol Exp Ther 213:491–496

    Google Scholar 

  • Rand MJ, Story DF, Allen GS, Glover AB, McCulloch MW (1973) Pulse-to-pulse modulation of noradrenaline release through a prejunctional α-receptor auto-inhibitory mechanism. In: Usdin E, Snyder S (eds) Frontiers in catecholamine research. Pergamon, New York, pp 579–581

    Google Scholar 

  • Rand MJ, McCulloch MW, Story DF (1975) Pre-junctional modulation of noradrenergic transmission by noradrenaline, dopamine and acetylcholine. In: Davies DS, Reid JL (eds) Control action of drugs in blood pressure regulation. Pitman Medical London, pp 94–132

    Google Scholar 

  • Rand MJ, Law M, Story DF, McCulloch MW (1976) Effects of β-adrenoceptor blocking drugs on adrenergic transmission. Drugs 11 [Suppl 1]:134–143

    Google Scholar 

  • Rand MJ, Majewski H, McCulloch MW, Story DF (1980) An adrenaline-mediated positive feedback loop in sympathetic transmission and its possible role in hypertension. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon, New York, pp 263–269

    Google Scholar 

  • Rhodin JAG (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastr Res 18:181–223

    Google Scholar 

  • Rhodin JAG (1968) Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastr Res 25:452–500

    Google Scholar 

  • Rosell S, Belfrage E (1975) Adrenergic receptors in adipose tissue and their relation to adrenergic innervation. Nature (London) 253:738–739

    Google Scholar 

  • Ross G (1976) Adrenergic responses of the coronary vessels. Circ Res 39:461–465

    Google Scholar 

  • Ruffolo R, Yaden E, Waddel E (1980) Receptor interaction of imidazolines. V. Clonidine differentiates alpha adrenergic receptor subtypes in tissues from the rat. J Pharmacol Exp Ther 213:557–561

    Google Scholar 

  • Russell MP, Moran NC (1980) Evidence for lack of innervation of β 2-adrenoceptors in the blood vessels of the gracilis muscle of the dog. Circ Res 46:344–352

    Google Scholar 

  • Salt PJ, Iversen LL (1973) Catecholamine uptake sites in the rat heart after 6-hydroxy-dopamine treatment and in a genetically hypertensive strain. Naunyn-Schmiedeberg's Arch Pharmacol 279:381–386

    Google Scholar 

  • Salzman EW, Neri LL (1969) Cyclic 3′,5′-adenosine monophosphate in human blood platelets. Nature (London) 224:609–610

    Google Scholar 

  • Sammet S, Graefe K-H (1979) Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: kinetic evidence for co-transport. Naunyn-Schmiedeberg's Arch Pharmacol 309:99–107

    Google Scholar 

  • Schrold J, Nedergaard OA (1976) 3H-noradrenaline outflow induced from isolated adventitia and intima-media of rabbit aorta by electrical-field stimulation. Eur J Pharmacol 39:423–427

    Google Scholar 

  • Schrold J, Nedergaard OA (1977) Neuronal and extraneuronal outflow of 3H-noradrenaline induced by electrical field stimulation of an isolated blood vessel. Acta Physiol Scand 101:129–143

    Google Scholar 

  • Schrold J, Nedergaard OA (1981) Effect of cocaine and corticosterone on the metabolism of 3H-noradrenaline released from rabbit isolated aorta and adventitia. Acta Pharmacol Toxicol 48:233–241

    Google Scholar 

  • Shepherd JT, Vanhoutte PM (1975) Veins and their control. Saunders, London

    Google Scholar 

  • Simpson FO, Devine CE (1966) The fine structure of autonomic neuromuscular contacts in arterioles of sheep renal cortex. J Anat (London) 100:127–137

    Google Scholar 

  • Smith AD (1973) Mechanisms involved in the release of noradrenaline from sympathetic nerves. In: Iversen LL (ed) Catecholamines. Br Med Bull 29:123–129

    Google Scholar 

  • Smith AD, Winkler H (1972) Fundamental mechanisms in the release of catecholamines. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, pp 538–617)

    Google Scholar 

  • Somlyo AP, Somlyo AV (1968) Vascular smooth muscle. I. Normal structure, pathology, biochemistry and biophysics. Pharmacol Rev 20:197–273

    Google Scholar 

  • Somlyo AP, Somlyo AV (1970) Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol Rev 22:249–353

    Google Scholar 

  • Spector S, Tarver J, Berkowitz B (1972) Effects of drugs and physiological factors in the disposition of catecholamines in blood vessels. Pharmacol Rev 24:191–202

    Google Scholar 

  • Speden R (1970) Excitation of vascular smooth muscle. In: Bülbring E, Brading A, Jones A, Tomita T (eds) Smooth muscle. Arnold, London, pp 558–588

    Google Scholar 

  • Starke K (1971) Influence of α-receptor stimulants on noradrenaline release. Naturwissenschaften 58:420

    Google Scholar 

  • Starke K (1972) Alpha-sympathomimetic inhibition of adrenergic and cholinergic transmission in the rabbit heart. Naunyn-Schmiedeberg's Arch Pharmacol 274:18–45

    Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor system. Rev Physiol Biochem Pharmacol 77:1–124

    Google Scholar 

  • Starke K (1981a) α-Adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88:199–236

    Google Scholar 

  • Starke K (1981b) Presynaptic receptors. Ann Rev Pharmacol Toxicol 21:7–30

    Google Scholar 

  • Starke K, Docherty JR (1980) Recent developments in α-adrenoceptor research. J Cardiovasc Pharmacol 2 [Suppl 3]:S269–286

    Google Scholar 

  • Starke K, Montel H (1973) Influence of drugs with affinity for alpha-adrenoceptors on noradrenaline release by potassium and tyramine. In: Proceedings 2nd Meeting Adrenergic Mechanisms, University of Porto, Porto, pp 53–54

    Google Scholar 

  • Starke K, Montel H, Gayk W, Merker R (1974) Comparison of the effects of clonidine on pre-and postsynaptic adrenoceptor in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 285:133–150

    Google Scholar 

  • Starke K, Borowski E, Endo T (1975a) Preferential blockade of presynaptic α-adrenoceptors by yohimbine. Eur J Pharmacol 34:385–388

    Google Scholar 

  • Starke K, Endo T, Taube HD (1975b) Relative pre-and postsynaptic potencies of α-adrenoceptor agonists in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 291:55–78

    Google Scholar 

  • Starke K, Endo T, Taube HD, Borowski E (1975c) Presynaptic receptor systems on noradrenergic nerves. In: Almgren O, Carlsson A, Engel J (eds) Chemical tools in catecholamine research, vol 2. North-Holland, Amsterdam, pp 193–200

    Google Scholar 

  • Starke K, Steppeler A, Zumsteier A, Henseling M, Trendelenburg U (1980) False labelling of commercially available 3H-catecholamines? Naunyn-Schmiedeberg's Arch Pharmacol 311:109–112

    Google Scholar 

  • Starke K, Hedler L, Steppeler A (1981) Metabolism of endogenous and exogenous noradrenaline in guinea-pig atria. Naunyn-Schmiedeberg's Arch Pharmacol 317:193–198

    Google Scholar 

  • Steinsland OS, Furchgott RF, Kirpekar SM (1973) Inhibition of adrenergic neurotransmission by parasympathomimetics in the rabbit ear artery. J Pharmacol Exp Ther 184:346–356

    Google Scholar 

  • Stene-Larsen G, Helle KB (1978) Cardiac beta2-adrenoceptors in the frog. Comp Biochem Physiol 60:165–173

    Google Scholar 

  • Steppeler A, Tanaka T, Starke K (1978) A comparison of pre-and postsynaptic α-adrenergic effects of phenylephrine and tramazoline on blood vessels of the rabbit in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 304:223–230

    Google Scholar 

  • Stevens MJ, Moulds RFW (1982) Are the pre-and postsynaptic α-adrenoceptors in human vascular smooth mucle atypical? J Cardiovasc Pharmacol 4 [Suppl 1]:129–133

    Google Scholar 

  • Stjärne L (1975) Basic mechanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum, New York, pp 179–233

    Google Scholar 

  • Stjärne L, Brundin J (1975) Dual adrenoceptor-mediated control of noradrenaline secretion from human vasoconstrictor nerves: facilitation by β-receptors and inhibition by α-receptors. Acta Physiol Scand 94:139–141

    Google Scholar 

  • Stjärne L, Gripe K (1973) Prostaglandin-dependent and independent feedback control of noradrenaline secretion in vasoconstrictor nerves of normotensive human subjects. A preliminary report. Naunyn-Schmiedeberg's Arch Pharmacol 280:441–446

    Google Scholar 

  • Su C (1978) Purinergic inhibition of adrenergic transmission in rabbit blood vessels. J Pharmacol Exp Ther 204:351–361

    Google Scholar 

  • Su C, Bevan JA (1970) The release of 3H-norepinephrine in arterial strips studied by the technique of superfusion and transmural stimulation. J Pharmacol Exp Ther 172:62–68

    Google Scholar 

  • Su C, Bevan JA (1971) Adrenergic transmitter release and distribution in blood vessels. In: Bevan JA, Furchgott RF, Maxwell RA, Somlyo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger, Basel, pp 13–21

    Google Scholar 

  • Sullivan AT, Drew GM (1980) Pharmacological characterization of pre-and post-synaptic α-adrenoceptors in dog saphenous vein. Naunyn-Schmiedeberg's Arch Pharmacol 314:249–258

    Google Scholar 

  • Taira N, Yabuuchi Y, Yamashita S (1977) Profile of β-adrenoceptors in femoral, superior mesenteric, and renal vascular beds of dogs. Br J Pharmacol 59:577–583

    Google Scholar 

  • Takimoto GS, Cho AK, Shaeffer JC (1977) Inhibition of norepinephrine accumulation by amphetamine derivatives. Studies with rat brain and rabbit aorta. J Pharmacol Exp Ther 202:267–277

    Google Scholar 

  • Tatum AL (1912) On the destruction of epinephrine and constrictory substances of serum by oxygenation in the presence of blood vessel walls. J Pharmacol Exp Ther 4:151–156

    Google Scholar 

  • Teixeira F (1977) The effects of drugs and denervation on removal and accumulation of adrenaline in the perfused hind-limb of the dog. Arch Int Pharmacodyn 225:221–231

    Google Scholar 

  • Teixeira F, Macedo TRA (1981) Influence of deaminated metabolites on the relaxing effect of dopamine on dog saphenous vein. J Pharm Pharmacol 33:529–533

    Google Scholar 

  • Thoenen H (1972) Surgical, immunological and chemical sympathectomy. Their application in the investigation of the physiology and pharmacology of the sympathetic nervous system. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, p 813)

    Google Scholar 

  • Thoenen H, Tranzer JP (1971) Functional importance of subcellular distribution of false adrenergic transmitters. Progr Brain Res 34:223–236

    Google Scholar 

  • Thureson-Klein Å, Stjärne L, Brundin J (1976) Ultrastructure of nerves in veins from human omentum. Neuroscience 1:333–337

    Google Scholar 

  • Thureson-Klein Å, Klein RK, Stjärne L (1979) Vesicle populations and exocytosis in noradrenergic terminals of human veins. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon, New York, pp 262–264

    Google Scholar 

  • Timmermans PBMWM, Kwa HY, van Zwieten PA (1979) Possible subdivision of post-synaptic α-adrenoceptors mediating pressor response in the pithed rat. Naunyn-Schmiedeberg's Arch Pharmacol 310:189–193

    Google Scholar 

  • Toda N, Goldberg LI (1975) Effects of dopamine on isolated canine coronary arteries. Cardiovasc Res 9:384–389

    Google Scholar 

  • Török J, Bevan JA (1971) Entry of 3H-norepinephrine into the arterial wall. J Pharmacol Exp Ther 177:613–620

    Google Scholar 

  • Trendelenburg U (1959) The supersensitivity caused by cocaine. J Pharmacol Exp Ther 125:56–65

    Google Scholar 

  • Trendelenburg U (1972a) Classification of sympathomimetic amines. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, pp 336–362)

    Google Scholar 

  • Trendelenburg U (1972b) Factors influencing the concentration of catecholamines at the receptors. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33, pp 726–761)

    Google Scholar 

  • Trendelenburg U (1974) The relaxation of rabbit aortic strips after a preceding exposure to sympathomimetic amines. Naunyn-Schmiedeberg's Arch Pharmacol 281:13–46

    Google Scholar 

  • Trendelenburg U (1978) Extraneuronal uptake and metabolism of catecholamines as a site of loss. Life Sci 22:1217–1222

    Google Scholar 

  • Trendelenburg U (1979) Release induced by phenethylamines. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon, New York, pp 333–354

    Google Scholar 

  • Trendelenburg U (1980) A kinetic analysis of the extraneuronal uptake and metabolism of catecholamines. Rev Physiol Biochem Pharmacol 87:33–115

    Google Scholar 

  • Triner L, Vulliemoz Y, Verosky M, Mangor WM (1975) Cyclic adenosine monophosphate and vascular reactivity in spontaneous hypertensive rats. Biochem Pharmacol 24:743–745

    Google Scholar 

  • Tsunekawa K, Morhri K, Ikeda M, Ohgushi N, Fujiwara M (1967) Histochemical demonstration of adrenergic fibers in the smooth muscle layer of media of dorsal pedal artery in dog. Experientia 23:842–843

    Google Scholar 

  • U'Prichard DC, Snyder SH (1978) Guanyl nucleotide influence on 3H-ligand binding to alpha-noradrenergic receptors in calf brain membranes. J Biol Chem 253:3444–3452

    Google Scholar 

  • Vanhoutte PM, Lorenz RR, Tyce GM (1973) Inhibition of norepinephrine-3H-release from sympathetic nerve endings in veins by acetylcholine. J Pharmacol Exp Ther 185:386–394

    Google Scholar 

  • Vanhoutte PM, Coen EP, de Ridder WJ, Verbeuren TJ (1979) Evoked release of endogenous norepinephrine in the canine saphenous vein. Inhibition by acetylcholine. Circ Res 45:608–614

    Google Scholar 

  • Vanhoutte PM, Verbeuren TJ, Webb RC (1981) Local modulation of adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 61:151–247

    Google Scholar 

  • Van Meel JCA, De Jonge A, Kalman HO, Wilffert B, Timmermans PBMWM, van Zwieten PA (1981) Vascular smooth muscle contraction initiated by postsynaptic α2-adrenoceptors activation is induced by an influx of extracellular calcium. Eur J Pharmacol 69:205–208

    Google Scholar 

  • Van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn 160:492–494

    Google Scholar 

  • Verhaege RH, Vanhoutte PM, Shepherd JT (1977) Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenosine nucleotides. Circ Res 40:208–215

    Google Scholar 

  • Verity MA (1971) Morphologic studies of the vascular neuroeffector apparatus. In: Bevan JA, Furchgott RF, Maxwell RA, Somlyo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger, Basel, pp 2–12

    Google Scholar 

  • Verity MA, Bevan JA (1968) Fine structural study of the terminal effector plexus, neuromuscular and intermuscular relationships in the pulmonary artery. J Anat (London) 103:49–63

    Google Scholar 

  • Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Progr Neurobiol 12:181–290

    Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57:660–728

    Google Scholar 

  • Westfall TC, Peach MJ, Tittermary V (1979) Enhancement of the electrically induced release of norepinephrine from the rat portan vein: mediation by β2-adrenoceptors. Eur J Pharmacol 58:67–74

    Google Scholar 

  • White FN, Ikeda M, Elsner RW (1973) Adrenergic innervation of large arteries in the seal. Comp Gen Pharmacol 4:271–276

    Google Scholar 

  • Winquist RJ, Bevan JA (1979) The effect of surgical sympathetic denervation upon the development of intrinsic myogenic tone and the alpha and beta adrenergic receptor-mediated responses of the rabbit facial vein. J Pharmacol Exp Ther 211:1–6

    Google Scholar 

  • Wood CL, Arnett CD, Clarke WR, Tsai BS, Lefkowitz RJ (1979) Subclassification of alpha-adrenergic receptors by direct binding studies. Biochem Pharmacol 28:1277–1282

    Google Scholar 

  • Woodcock EA, Funder JW, Johnston CI (1979) Decreased cardiac β-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 45:560–565

    Google Scholar 

  • Wyse DG (1974) On the role of neuronal uptake (uptake1) in the inactivation of noradrenaline by aortic strips. Can J Physiol Pharmacol 52:1102–1109

    Google Scholar 

  • Wyse DG (1976) Inactivation of neural and exogenous norepinephrine in rat tail artery by the oil immersion technique. J Pharmacol Exp Ther 198:102–111

    Google Scholar 

  • Yamaguchi N, De Champlain J, Nadeau RA (1977) Regulation of norepinephrine release from cardiac sympathetic fibers in the dog by presynaptic alpha and beta receptors. Circ Res 41:108–117

    Google Scholar 

  • Zuberbuhler RC, Bohr DF (1965) Responses of coronoary smooth muscle to catecholamines. Circ Res 16:431–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Verlag

About this chapter

Cite this chapter

Osswald, W., Guimarães, S. (1983). Adrenergic mechanisms in blood vessels: Morphological and pharmacological aspects. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 96. Reviews of Physiology, Biochemistry and Pharmacology, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031007

Download citation

  • DOI: https://doi.org/10.1007/BFb0031007

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11849-7

  • Online ISBN: 978-3-540-39499-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics