Skip to main content
Log in

Viability of meiotic prophase spermatocytes of rats is facilitated in primary culture of dispersed testicular cells on collagen gel by supplementing epinephrine or norepinephrine: Evidence that meiotic prophase spermatocytes complete meiotic divisions in vitro

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Dispersed testicular cells prepared from 14-d-old rats were cultured on type 1 collagen gels using a medium composed of a 1∶1 mixture of Ham’s F12 medium and Leibovitz’s L15 medium (F12-L15 medium) containing 10% (vol/vol) fetal bovine serum. The viability of the spermatogenic cells was facilitated by supplementing a rat adrenal extract into the medium. The effective substance(s) (the survival factor) was purified from acid extracts of adrenals by molecular sieve high performance liquid chromatography and identified as epinephrine and norepinephrine. Both epinephrine and norepinephrine promoted the survival of the spermatogenic cells with a half saturating dose of 10 ng/ml. The spermatogenic cells, which could be cultured for 2 wk on a collagen gel by supplementing with the survival factor (epinephrine or norepinephrine), were subjected to Giemsa staining and to DNA flow cytometry. The following results were obtained: a) The spermatogenic cells from 14-d-old rats did not contain spermiogenic cells (lc-cells). b) During a culture period of 2 to 7 d the ratio of meiotic prophase spermatocytes (4c-cells) to premeiotic cells (2c-cells) increased. On Day 7, more than 90% of the surviving cells were meiotic prophase spermatocytes. c) On Day 10, spermatids (lc-cells) appeared for the first time. The time of the first appearance of spermatids in the culture was consistent with that in vivo. These results suggest that both epinephrine and norepinephrine facilitated the viability of meiotic prophase spermatocytes and that a part of the meiotic prophase spermatocytes completed the meiotic divisions in the testicular cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abé, S. Differentiation of spermatogenic cells from vertebratesin vitro. Int. Natl. Rev. Cytol. 109:159–209; 1987.

    Google Scholar 

  • Anakwe, O. O.; Murphy, P. R.; Moger, W. H. Characterization of β-adrenergic binding sites on rodent Leydig cells. Biol. Reprod. 33:815–826; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Anton, A. H.; Sayre, D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138:360–375; 1962.

    PubMed  CAS  Google Scholar 

  • Bellvé, A. R.; Cavicchia, J. C.; Millette, C. F., et al. Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. J. Cell Biol. 74:68–85; 1977.

    Article  PubMed  Google Scholar 

  • Breuiller, M.; Tahri-Joutei, A.; Ferré, F., et al. β-Adrenergic receptors and stimulatory effects of (−) isoproterenol on testosterone production in fetal mouse Leydig cells. Biochem. Biophys. Res. Commun. 151:1454–1460; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Clermont, Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52:198–236; 1972.

    PubMed  CAS  Google Scholar 

  • Cooke, B. A.; Golding, M.; Dix, C. J., et al. Catecholamine stimulation of testosterone production via cyclic AMP in mouse Leydig cells in monolayer culture. Mol. Cell. Endocrinol. 27:221–231; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Eik-Nes, K. B. An effect of isoproteronol on rates of synthesis and secretion of testosterone. Am. J. Physiol. 217:1764–1770; 1969.

    PubMed  CAS  Google Scholar 

  • Feig, L. A.; Bellvé, A. R.; Erickson, N. H., et al. Sertoli cells contain a mitogenic polypeptide. Proc. Natl. Acad. Sci. USA 77:4774–4778; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, I. B. Sites of action of androgens and follicle stimulating hormone on cells of the seminiferous tuble. In: Litwack, G., ed Biochemical action of hormones, vol. 5. New York: Academic Press; 1978:249–281.

    Google Scholar 

  • Heindel, J. J.; Steinberger, A.; Strada, S. J. Identification and characterization of a β-andrenergic receptor in the rat Sertoli cell. Mol. Cell. Endocrinol. 22:349–358; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, S. D.; Spotts, G.; Smith, R. G. Rat Sertoli cells secrete a growth factor that blocks epidermal growth factor (EGF) binding to its receptor. J. Biol. Chem. 261:4076–4080; 1986.

    PubMed  CAS  Google Scholar 

  • Janecki, A.; Steinberger, A. Bipolar secretion of androgen-binding protein and transferrin by Sertoli cells cultured in a two compartment culture chamber. Endocrinology 120:291–298; 1987.

    PubMed  CAS  Google Scholar 

  • Kierszenbaum, A. L.; Feldman, M.; Lea, O., et al. Localization of androgen-binding protein in proliferating Sertoli cells in culture. Proc. Natl. Acad. Sci. USA 77:5322–5326; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum, A. L.; Spruill, W. A.; White, M. G., et al. Rat Sertoli cells aquire a β-adrenergic response during primary culture. Proc. Natl. Acad. Sci. USA 82:2049–2053; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum, A. L.; Abdullah, M.; Ueda, H., et al. Spermatogenesisin vitro: searching forin vivo correlates. In: Mahesh, V. B.; Dhindsa, D. S.; Anderson, E., et al., eds. Regulation of ovarian and testicular function. New York: Plenum Publishing; 1987:535–560.

    Google Scholar 

  • Kodani, M.; Kodani, K. Thein vitro cultivation of mammalian Sertoli cells. Proc. Natl. Acad. Sci. USA 56:1200–1206; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Krishan, A. Rapid flow cytometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66:188–193; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Lacroix, M.; Smith, F. E.; Fritz, I. B. Secretion of plasminogen activator by Sertoli cell enriched cultures. Mol. Cell. Endocrinol. 9:227–236; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Lee, N. T.; Chae, C-B.; Kierszenbaum, A. L. Contrasting levels of transferrin gene activity in cultured rat Sertoli cells and intact seminiferous tubules. Proc. Natl. Acad. Sci. USA 83:8177–8181; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lescoat, G.; Lescoat, D.; Garnier, D. H. Influence of adrenalectomy on maturation of gonadotrophin function in the male rat. J. Endocrinol. 95:1–6; 1982.

    PubMed  CAS  Google Scholar 

  • Moger, W. H.; Murphy, P. R.; Casper, R. F. Catecholamine stimulation of androgen production by mouse interstitial cells in primary culture. J. Androl. 3:227–231; 1982.

    CAS  Google Scholar 

  • Parvinen, M.; Vihko, K. K.; Toppari, J. Cell interactions during the seminiferous epithelial cycle. Int. Natl. Rev. Cytol. 104:115–151; 1986.

    Article  CAS  Google Scholar 

  • Ritzen, E. M.; Hansson, V.; French, F. S. The Sertoli cell. In: Burger, H.; de Kretser, D., eds. The testis. Comprehensive endocrinology. New York: Raven Press; 1981:171–194.

    Google Scholar 

  • Romrell, L. J.; Bellvé, A. R.; Fawcett, D. W. Separation of mouse spermatogenic cells by sedimentation velocity. Dev. Biol. 49:119–131; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, M. K.; Griswold, M. D. Sertoli cells synthesize and secrete a transferrin-like protein. J. Biol. Chem. 255:9523–9525; 1980.

    PubMed  CAS  Google Scholar 

  • Skinner, M. K.; Fritz, I. B. Structural characterization of proteoglycans produced by testicular peritubular cells and Sertoli cells. J. Biol. Chem. 260:11874–11883; 1985.

    PubMed  CAS  Google Scholar 

  • Smith, E. P.; Svoboda, M. E.; Van Wyk, J. J., et al. Partial characterization of somatomedin-like peptide from the medium of cultured rat Sertoli cells. Endocrinology 120:186–193; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Steinberger, A.; Steinberger, E. Stimulatory effect of vitamins and glutamine on the differentiation of germ cells in rat testes organ culture grown in chemically defined media. Exp. Cell Res. 44:429–435; 1966a.

    Article  PubMed  CAS  Google Scholar 

  • Steinberger, A.; Steinberger, E.In vitro culture of rat testicular cells. Exp. Cell Res. 44:443–452; 1966b.

    Article  PubMed  CAS  Google Scholar 

  • Tres, L. L.; Kierszenbaum, A. L. Viability of rat spermatogenic cellsin vitro is facilitated by their coculture with Sertoli cells in serum-free hormone-supplemented medium. Proc. Natl. Acad. Sci. USA 80:3377–3381; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, Y. Viability of meiotic prophase spermatocytes of rats is facilitated in primary culture of dispersed testicular cells on collagen gel by supplementing epinephrine or norepinephrine: Evidence that meiotic prophase spermatocytes complete meiotic divisions in vitro. In Vitro Cell Dev Biol 25, 1088–1098 (1989). https://doi.org/10.1007/BF02621259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621259

Key words

Navigation