Skip to main content
Log in

Acute neurotoxicity ofl-glutamate induced by impairment of the glutamate uptake system

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined the effect of the glutamate uptake inhibitorl-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) on the neurotoxicity ofl-glutamate in organotypic cultures of rat spinal cord. Eighteen-day-old cultures were incubated with 500 μMl-glutamate, 1 mM PDC, or both. After 72 hours, the tissues were stained for acetylcholinesterase (AChE), and the ventral horn AChE-positive neurons (VHANs) analyzed using morphometry. Neitherl-glutamate nor PDC affected AChE staining, but in combination they produced markedly reduced AChE staining in the dorsal horn and a significant decrease in the number of VHANs (especially the smaller VHANs) as compared with the control. Moreover, treatment with 200 μM PDC for 2 weeks preferentially affected the smaller VHANs. The neurotoxicity ofl-glutamate plus PDC was blocked by the N-methyl-d-aspartate (NMDA) antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP).

Results suggest that glutamate uptake system has an important protective function in the aggravation of acute neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bradford, H. F., Young, A. M. J., and Crowder, J. M. 1987. Continuous glutamate leakage from brain cells is balanced by compensatory high-affinity reuptake transport. Neurosci. Lett. 81:296–302.

    Article  PubMed  CAS  Google Scholar 

  2. Fonnum, F. 1984. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Article  PubMed  CAS  Google Scholar 

  3. McBean, G. J., and Roberts, P. J. 1984. Chronic infusion ofL-glutamate causes neurotoxicity in rat striatum. Brain Res. 290: 372–375.

    Article  PubMed  CAS  Google Scholar 

  4. Olney, J. W. 1969. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721.

    Article  PubMed  CAS  Google Scholar 

  5. Sloviter, R. S., and Dempster, D. W. 1985. Epileptic damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res. Bull. 15:39–60.

    Article  PubMed  CAS  Google Scholar 

  6. Choi, D. W., Maulucci-Gedde, M., and Kriegstein, A. R. 1987. Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7: 357–368.

    PubMed  CAS  Google Scholar 

  7. Frandsen, A., Drejer, J., and Schousboe, A. 1989. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-d-aspartate (NMDA) as well as non-NMDA receptors. J. Neurochem. 53:297–299.

    Article  PubMed  CAS  Google Scholar 

  8. Garthwaite J., and Gilligan, G. J. 1984. Kainate-glutamate interactions in rat cerebellar slices. Neuroscience 11:125–138.

    Article  PubMed  CAS  Google Scholar 

  9. Garthwaite, J. 1985. Cellular uptake disguises action ofl-glutamate on N-methyl-d-aspartate receptors. With an appendix: diffusion of transported amino acids into brain slices. Br. J. Pharmac. 85:297–307.

    CAS  Google Scholar 

  10. Michaels, R., and Rothman, S. M. 1990. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J. Neurosci. 10:283–292.

    PubMed  CAS  Google Scholar 

  11. Regan, R. F., and Choi, D. W. 1991. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43:585–591.

    Article  PubMed  CAS  Google Scholar 

  12. Lipton, S. A., and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622.

    Article  PubMed  CAS  Google Scholar 

  13. Meldrum, B., and Garthwaite, J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.

    Article  PubMed  CAS  Google Scholar 

  14. Plaitakis, A., and Caroscio, J. T. 1987. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 22:575–579.

    Article  PubMed  CAS  Google Scholar 

  15. Plaitakis, A., Constantakakis, E., and Smith, J. 1988. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann. Neurol. 24:446–449.

    Article  PubMed  CAS  Google Scholar 

  16. Rothstein, J. D., Tsai, G., Kuncl, R. W., Clawson, L., Cornblath, D. R., Drachman, D. B., Pestronk, A., Stauch, B. L., and Coyle, J. T. 1990. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28:18–25.

    Article  PubMed  CAS  Google Scholar 

  17. Rothstein, J. D., Martin, L. J., and Kuncl, R. W. 1992. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326:1464–1468.

    Article  PubMed  CAS  Google Scholar 

  18. Rothstein, J. D., Jin, L., Dykes-Hoberg, M., and Kuncl, R. W. 1993. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90:6591–6595.

    Article  PubMed  CAS  Google Scholar 

  19. Delfs, J., Friend, J., Ishimoto, S., and Saroff, D. 1989. Ventral and dorsal orn acetylcholinesterase neurons are maintained in organotypic cultures of postnatal rat spinal cord explants. Brain Res. 488:31–42.

    Article  PubMed  CAS  Google Scholar 

  20. Delfs, J., Friend, J., and Saroff, D. 1990. N-methyl-d-aspartic acid (NMDA) effects on spinal cord in organotypic roller tube culture.in F. C. Rose and F. H. Norris (eds.), ALS. New Advances in Toxicology and Epidemiology, pp. 273–281. Smith-Gordon, London.

    Google Scholar 

  21. Bridges, R. J., Stanley, M. S., Anderson, M. W., Cotman, C. W., and Chamberlin, A. R. 1991. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J. Med. Chem. 34: 717–725.

    Article  PubMed  CAS  Google Scholar 

  22. Koelle, G. B., and Friedenwald, J. S. 1949. A histochemical method for localizing cholinesterase activity. Proc. Soc. Exp. Biol. Med. 70:617–622.

    CAS  PubMed  Google Scholar 

  23. Bouvier, M., Szatkowski, M., Amato, A., and Attwell, D. 1992. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360:471–474.

    Article  PubMed  CAS  Google Scholar 

  24. McBean, G. J., and Roberts, P. J. 1985. Neurotoxicity ofl-glutamate and DL-threo-3-hydroxyaspartate in the rat striatum. J. Neurochem. 44:247–254.

    Article  PubMed  CAS  Google Scholar 

  25. Nishida, Y., Delfs, J., Saroff, D., Okazaki, S., and Saito, S. 1993. The neurotoxicity of glutamate agonists on ventral horn neurons in organotypic explant cultures of spinal cord. Can. J. Neurol. Sci. 20(S4): S82.

    Google Scholar 

  26. Faden, A. I., and Simon, R. P. 1988. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann. Neurol. 23:623–626.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez-Arizala, A., Rigamonti, D. D., Long, J. B., Kraimer, J. M., and Holaday, J. W. 1990. Effects of NMDA receptor antagonists following spinal ischemia in the rabbit. Exp. Neurol. 108: 232–240.

    Article  PubMed  CAS  Google Scholar 

  28. Mattson, M. P., Dou, P., and Kater, S. B. 1988. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087–2100.

    PubMed  CAS  Google Scholar 

  29. Stewart, G. R., Olney, J. W., Pathikonda, M., and Snider, W. D. 1991. Excitotoxicity in the embryonic chick spinal cord. Ann. Neurol. 30:758–766.

    Article  PubMed  CAS  Google Scholar 

  30. Peterson, C., Neal, J. H., and Cotman, C. W. 1989. Development of N-methyl-d-aspartate excitotoxicity in cultured hippocampal neurons. Dev. Brain Res. 48:187–195.

    Article  CAS  Google Scholar 

  31. Gonzalez, D. L., Fuchs, J. L., and Droge, M. H. 1993. Distribution of NMDA receptor binding in developing mouse spinal cord. Neurosci. Lett. 151:134–137.

    Article  PubMed  CAS  Google Scholar 

  32. Urca, G., and Urca, R. 1990. Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-d-aspartate induce permanent neural damage. Brain Res. 529:7–15.

    Article  PubMed  CAS  Google Scholar 

  33. Weiss, J. H., Koh, J.-Y., and Choi, D. W. 1989. Neurotoxicity of B-N-methylamino-L-alanine (BMAA) and B-N-oxalylamino-L-alanine (BOAA) on cultured cortical neurons. Brain Res. 497:64–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, S., Nishida, Y., Kawai, H. et al. Acute neurotoxicity ofl-glutamate induced by impairment of the glutamate uptake system. Neurochem Res 21, 1201–1207 (1996). https://doi.org/10.1007/BF02532396

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532396

Key Words

Navigation