Skip to main content
Log in

A dispersion model of hepatic elimination: 3. Application to metabolite formation and elimination kinetics

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A dispersion model of hepatic elimination is presented to describe metabolite formation and elimination kinetics within the liver, consistent with the known physiology and biochemistry of this organ. The model is based on the spread in residence times of blood flowing through the liver. This dispersion model is shown to be more consistent with transient and steady-state data obtained after the single passage of phenacetin and acetaminophen through the liver (both normal and retrograde perfusions) than other models of hepatic elimination. The dispersion model is suitable for the evaluation of enzyme heterogeneity using experimentally obtained metabolite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. L. Miller, C. S. Zanolli, and J. J. Gumucio. Quantitative morphology of the sinusoids of the hepatic acinus. Quantimet analysis of rat liver.Gastroenterology 76:965–969 (1979).

    CAS  PubMed  Google Scholar 

  2. A. M. Rappaport and D. L. J. Bilbey. Segmentation of the liver at the microscopic level.Anat. Rec. 136:262–263 (1960).

    Google Scholar 

  3. J. J. Gumucio and D. L. Miller. Functional implications of liver cell heterogeneity.Gastroenterology 80:393–403 (1981).

    CAS  PubMed  Google Scholar 

  4. K. S. Pang and J. R. Gillette. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin.J. Pharmacol. Exp. Ther. 207:178–194 (1978).

    CAS  PubMed  Google Scholar 

  5. L. Bass. On the location of cellular functions in perfused organs.J. Theor. Biol. 82:347–351 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. L. Bass. Functional zones in rat liver: The degree of overlap.J. Theor. Biol,84:303–319 (1981).

    Article  Google Scholar 

  7. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1973).

    Article  CAS  Google Scholar 

  8. K. Winkler, S. Keiding, and N. Tygstrup. Clearance as a quantitative measure of liver function. In P. Paumgartner and R. Presig (eds.),The Liver: Quantitative Aspects of Structure and Function, Karger, Basel, 1973, pp. 144–155.

    Google Scholar 

  9. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  10. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 2. Steady-state considerations-Influence of hepatic blood flow rate, binding within blood, and hepatocellular enzyme activity.J. Pharmacokin. Biopharm. 14:261–268 (1986).

    Article  CAS  Google Scholar 

  11. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  12. A. J. Koo, Y. S. Liang, and K. K. Cheng. The terminal microcirculation in the rat.Q. J. Exp. Physiol. 60:261–266 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. O. Levenspiel.Chemical Reaction Engineering, Wiley, New York, 1972, pp. 253–315.

    Google Scholar 

  14. J. C. Mecklenburgh and S. Hartland.Theory of Backmixing. The Design of Continuous Flow Chemical Plant with Backmixing, Wiley, London, 1975, pp. 213–215.

    Google Scholar 

  15. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel-tube” model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  16. P. V. Dankwerts. Continuous flow systems. Distribution of residence times.Chem. Eng. Sci. 2:1–13 (1953).

    Article  Google Scholar 

  17. P. Veng-Pederson. Curve fitting and modelling in pharmacokinetics and some practical experience with NONLIN and a new program FUNFIT.J. Pharmacokin. Biopharm. 5:513–531 (1977).

    Article  Google Scholar 

  18. P. D. I. Richardson and P. G. Withrington. Liver blood flow II. Effects of drugs and hormones on liver blood flow.Gastroenterology 81:356–375 (1981).

    CAS  PubMed  Google Scholar 

  19. K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats.J. Pharmacol. Exp. Ther. 216:339–346 (1981).

    CAS  PubMed  Google Scholar 

  20. K. S. Pang and M. Rowland. Hepatic clearance of drugs. III. Additional experimental evidence supporting the “well-stirred” model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused liverin situ preparation.J. Pharmacokin. Biopharm. 5:681–699 (1977).

    Article  CAS  Google Scholar 

  21. K. S. Pang. Ph.D. Thesis, University of California, 1976.

  22. M. S. Roberts and M. Rowland. Hepatic elimination-Dispersion model.J. Pharm. Sci. 74:585–587 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.S., Rowland, M. A dispersion model of hepatic elimination: 3. Application to metabolite formation and elimination kinetics. Journal of Pharmacokinetics and Biopharmaceutics 14, 289–308 (1986). https://doi.org/10.1007/BF01106708

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106708

Key words

Navigation