Skip to main content
Log in

A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A dispersion model of hepatic elimination, based on the residence time distribution of blood elements within the liver, is presented. The general rate equations appropriate for describing the hepatic output concentration of a tracer solute are derived. Particular consideration is given to events following a bolus input dose of a tracer. The model is shown to be compatible with the known hepatic architecture and hepatic physiology. The model has been fitted to hepatic outflow data for red blood cells, albumin, and other noneliminated solutes. The experimental data suggest a high degree of dispersion of blood elements within the liver. The model has also been used to evaluate the effects of changes in enzyme activity, hepatic cell permeability, blood flow, and protein binding on the outflow concentration vs. time profiles of solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1977).

    Article  Google Scholar 

  2. G. R. Wilkinson and D. G. Shand. Commentary. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  3. D. L. Miller, C. S. Zanolli, and J. J. Gumucio. Quantitative morphology of the sinusoids of the hepatic acinus: Quantimet analysis of rat liver.Gastroenterology 76:965–969 (1979).

    CAS  PubMed  Google Scholar 

  4. A. I. Koo, I. Y. S. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat.Q. J. Exp. Physiol,60:261–266 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. J. J. Gumucio and D. L. Miller. Function implications of liver cell heterogeneity.Gastroenterology 80:393–403 (1981).

    CAS  PubMed  Google Scholar 

  6. K. S. Pang and M. Rowland. Hepatic clearance of drugs. 1. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  7. O. Levenspiel.Chemical Reaction Engineering, Wiley, New York, 1972, pp. 253–315.

    Google Scholar 

  8. L. Bass, P. J. Robinson, and A. J. Bracken. Hepatic elimination of flow substances: The distributed model.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. E. L. Forker and B. Luxon. Hepatic transport kinetics and plasma disappearance curves: Distributed modelling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).

    CAS  PubMed  Google Scholar 

  10. K. S. Pang and M. Rowland. Hepatic clearance of drugs. 2. Experimental evidence for acceptance of the “well-stirred” model over the “parallel-tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5:655–683 (1977).

    Article  CAS  Google Scholar 

  11. S. Keiding and E. Chiarantini. Effect of sinusoidal perfusion on galactose elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 205:465–470 (1978).

    CAS  PubMed  Google Scholar 

  12. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the “well-stirred” and “parallel-tube” models.J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. S. Keiding and E. Steiness. Flow dependence of propranolol elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 230:474–477 (1984).

    CAS  PubMed  Google Scholar 

  14. D. B. Jones, D. J. Morgan, G. W. Mihaly, L. K. Webster, and R. A. Smallwood. Discrimination between the venous equilibrium and sinusoidal models of hepatic drug elimination in the isolated perfused rat liver by perturbation of propranolol protein binding.J. Pharmacol. Exp. Ther. 229:522–526 (1984).

    CAS  PubMed  Google Scholar 

  15. M. Rowland, D. Leitch, G. Fleming, and B. Smith. Protein binding and hepatic clearance: Discrimination between models of hepatic clearance with diazepam, a drug of high intrinsic clearance, in the isolated perfused rat liver preparation.J. Pharmacokin. Biopharm. 12:129–147 (1984).

    Article  CAS  Google Scholar 

  16. L. Bass. Models of hepatic elimination.J. Pharm. Sci. 72:1229 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. D. J. Morgan. Models of hepatic elimination: A response.J. Pharm. Sci. 72:1230 (1983).

    Article  Google Scholar 

  18. E. L. Forker and B. A. Luxon. Albumin binding and hepatic uptake: The importance of model selection.J. Pharm. Sci. 72:1232–1233 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. W. A. Colburn. Albumin binding and hepatic uptake: The importance of model selection- A response.J. Pharm. Sci. 72:1233 (1983).

    Article  Google Scholar 

  20. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 2. Steady-state considerations-Influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity.J. Pharmacokin. Biopharm. 14:261–268 (1986).

    Article  CAS  Google Scholar 

  21. M. S. Roberts and M. Rowland. Hepatic elimination: A dispersion model.J. Pharm. Sci. 74:585–587 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. O. Levenspiel and W. K. Smith. Notes on the diffusion-type model for longitudinal mixing of fluids in flow.Chem. Eng. Sci. 6:227–233 (1957).

    Article  CAS  Google Scholar 

  23. G. F. Froment and K. B. Bischoff.Chemical Reactor Analysis and Design, Wiley, New York, 1979.

    Google Scholar 

  24. L. Bass, S. Keiding, K. Winkler, and N. Tygstrup. Enzymatic elimination of substances flowing through the intact liver.J. Theor. Biol. 61:393–409 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. P. V. Dankwerts. Continuous flow systems. Distribution of residence times.Chem. Eng. Sci. 2:1–18 (1952).

    Article  Google Scholar 

  26. C. Y. Wen and L. T. Fan.Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York, 1975.

    Google Scholar 

  27. E. T. Van der Laan. Notes on the diffusion-type model for the longitudinal mixing of flow.Chem. Eng. Sci. 7:187–191 (1957).

    Google Scholar 

  28. J. C. Jaeger and G. N. Newstead.An Introduction to the Laplace Transform, Methuen, London, 1968.

    Google Scholar 

  29. C. Y. Wen and L. T. Fan.Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York, 1975, p. 134.

    Google Scholar 

  30. W. Perl and F. P. Chinard. A correction-diffusion model of indicator transport through an organ. Circ. Res.22:273–298 (1967).

    Article  Google Scholar 

  31. H. Brenner. Diffusion model of longitudinal mixing in beds of finite length. Numerical values.Chem. Eng. Sci. 17:229–243 (1962).

    Article  CAS  Google Scholar 

  32. R. V. Churchill.Operational Mathematics, 2nd ed., McGraw-Hill, New York, 1958, p. 15.

    Google Scholar 

  33. J. F. Wehner and R. H. Wilhelm. Boundary conditions of flow reactor.Chem. Eng. Sci. 6:89–93 (1956).

    Article  CAS  Google Scholar 

  34. J. R. Pearson. A note on the “Dankwerts” boundary conditions for continuous flow reaction.Chem. Eng. Sci. 10:281–285 (1959).

    Article  CAS  Google Scholar 

  35. C. W. Sheppard.Basic Principles of the Tracer Method, Wiley, New York, 1962, pp. 251–253.

    Google Scholar 

  36. M. Weiss. Moments of physiological transit time distribution and the time course of drug disposition in the body.J. Math. Biol. 15:305–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. C. A. Goresky. A linear model for determining liver sinusoidal and extravascular volume.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  38. P. Veng-Pederson. Curve fitting and modelling in pharmacokinetics and some practical experience with NONLIN and a new program FUNFIT.J. Pharmacokin. Biopharm. 5:513–531 (1977).

    Article  Google Scholar 

  39. C. A. Goresky. Kinetic interpretation of hepatic multiple indicator dilution studies.Am. J. Physiol. 245:G1-G12 (1983).

    CAS  PubMed  Google Scholar 

  40. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: The transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. A. L. Jones, G. T. Hradek, R. H. Renston, K. Y. Wong, G. Karlagancs, and G. Paumgartner. Autoradiographic evidence for hepatic lobular concentration gradient of bile and derivative.Am. J. Physiol. 238:G233-G237 (1980).

    CAS  PubMed  Google Scholar 

  42. J. J. Gumucio, D. L. Miller, M. D. Krauss, and C. C. Zanolli. Transport of fluorescent compounds into hepatocytes and the resultant zonal labelling of the hepatic acinus in the rat.Gastroenterology 80:639–646 (1981).

    CAS  PubMed  Google Scholar 

  43. J. J. Gumucio. Functional and anatomic heterogeneity in the liver cinus: Impact on transport.Am. J. Physiol. 245:G578-G582 (1983).

    Google Scholar 

  44. J. W. Grisham and W. Nopanitaya. Scanning electron microscopy of casts of hepatic microvessels: Review of methods and results. In W. W. Lautt (ed.),Hepatic Circulation in Health and Disease, Raven Press, New York, 1981, pp. 87–109.

    Google Scholar 

  45. A. M. Rappaport. The acinus-microvascular unit of the liver. In W. W. Lautt (ed.),Hepatic Circulation in Health and Disease, Raven Press, New York, 1981, pp. 175–192.

    Google Scholar 

  46. H. Kramers and K. R. Westerterp.Elements of Chemical Reaction Design and Operation, Academic Press, New York, 1963, pp. 70–73.

    Google Scholar 

  47. C. Y. Choi and D. D. Perlmutter. A unified treatment of inlet boundary condition for dispersion flow models.Chem. Eng. Sci. 31:250–252 (1976).

    Article  CAS  Google Scholar 

  48. L. G. Gibilaro. On the residence time distribution for systems with open boundaries.Chem. Eng. Sci. 33:487–492 (1978).

    Article  CAS  Google Scholar 

  49. C. A. Goresky, E. R. Gordon, and G. G. Bach. Uptake of monohydric alcohols by liver: Demonstration of a shared enzyme space.Am. J. Physiol. 244:G198-G214 (1983).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.S., Rowland, M. A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. Journal of Pharmacokinetics and Biopharmaceutics 14, 227–260 (1986). https://doi.org/10.1007/BF01106706

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106706

Key words

Navigation