Skip to main content
Log in

In vitro andin vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

An important parameter used in physiologically based pharmacokinetic models is the partition coefficient (Kp), which is defined as the ratio of tissue drug concentration to the concentration of drug in the emergent venous blood of the tissue. Since Kp is governed by reversible binding to protein and other constituents in blood and tissue, an attempt was made here to estimate the Kp values for a model drug ethoxybenzamide (EB) by means of in vitrobinding studies and to compare these Kp values to those obtained from in vivokinetic parameters observed following the administration of EB by two different routes, i.e., i.v. bolus injection and constant rate infusion. The Kp values obtained by using these three different methods were in reasonably good agreement suggesting that binding data obtained in vitrocan successfully be used to estimate in vivodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Dedrick and B. K. Bischoff. Pharmacokinetics in application of the artificial kidney.Chem. Eng. Progr. Symp. Ser. 64(84):32–44 (1968).

    Google Scholar 

  2. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59:149–154 (1970).

    Article  CAS  PubMed  Google Scholar 

  4. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man. I. Prediction by a perfusion model.Clin. Pharmacol. Ther. 16:87–98 (1974).

    CAS  PubMed  Google Scholar 

  6. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin distribution and elimination in the rat.J. Pharm. Sci. 66:1138–1142 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. P. A. Harris and J. F. Gross. Preliminary pharmacokinetics model for adriamycin (NSC-123127).Cancer Chemother. Rep. 59:819–825 (1975).

    CAS  PubMed  Google Scholar 

  8. H. S. G. Chen and J. F. Gross. Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 7:117–125 (1979).

    Article  CAS  Google Scholar 

  9. J. H. Lin, M. Hayashi, S. Awazu, and M. Hanano. Correlation betweenin vitro andin vivo drug metabolism rate: oxidation of ethoxybenzamide in rat.J. Pharmacokin. Biopharm. 6:327–337 (1978).

    Article  CAS  Google Scholar 

  10. K. S. Pang and M. Rowland. Hepatic clearance of drugs I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  11. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtainedin vitro as well as on physiological data.J. Pharmacokin. Biopharm. 10:649–661 (1982).

    Article  CAS  Google Scholar 

  12. D. Shen and M. Gibaldi. Critical evaluation of use of effective protein fractions in developing pharmacokinetic models for drug distribution.J. Pharm. Sci,63:1698–1703 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. L. S. Schanker and A. S. Morrison. Physiological disposition of guanethidine in rat and its uptake by heart slices.Int. J. Neuropharmacol. 4:27–39 (1965).

    Article  CAS  PubMed  Google Scholar 

  14. R. Kuntzman, M. Jacobson, I. Tsai, and J. J. Burns. Certain aspects of drug binding to nonplasma protein as illustrated by studies with cyclicine, chlorcyclizine, and polymyxin B.Ann. N.Y. Acad. Sci. 226:131–147 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. D. V. Prag and E. J. Simon. Studies on the intracellular distribution and tissue binding of dihydromorphine-7,8-H3 in rat.Proc. Soc. Exp. Biol. Med. 122:6–11 (1966).

    Article  Google Scholar 

  16. B. Fichtl, N. Filous, and H. Kurz. Binding of drug to muscle tissue.Naunyn- Schmiedberg's Arch. Pharmacol. 293 (suppl R):46 (1976).

    Google Scholar 

  17. B. E. Ballard. Pharmacokinetics and temperature.J. Pharm. Sci. 63:1345–1358 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Igari, Y. Sugiyama, S. Awazu, and M. Hanano. Interspecies difference in drug protein binding-temperature and protein concentration dependency: effect on calculation of effective protein binding.J. Pharm. Sci. 70:1049–1053 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J.H., Sugiyama, Y., Awazu, S. et al. In vitro andin vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. Journal of Pharmacokinetics and Biopharmaceutics 10, 637–647 (1982). https://doi.org/10.1007/BF01062545

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062545

Key words

Navigation