Skip to main content
Log in

Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The residence time distribution of noneliminated solutes in the liver can be represented by a variety of stochastic models. The dispersion model (closed and mixed boundary conditions), gamma distribution, log normal distribution and normal distribution models were used to describe output concentration-time profiles after bolus injections into the liver of labeled erythrocytes and albumin. The dispersion model and log normal distribution model provide the best representation of the data and give similar estimates of relative dispersion and availability for varying hepatocellular enzyme activity. The availability of solutes eliminated from the liver by first-order kinetics is determined by the residence time distribution of the solute in the liver and not on events occurring in the liver when a uniform enzyme distribution is assumed. Both enzyme heterogeneity (axial or transverse) and hepatocyte permeability may affect solute availability. A more complex model accounting for enzyme distribution and the micromixing of solute within the liver is required for solutes undergoing saturable kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, IL, 1975, pp. 57–128.

    Google Scholar 

  2. M. Rowland and T. N. Tozer.Clinical Pharmacokinetics: Concepts and Applications, Lea & Febiger, Philadelphia, 1980, pp. 48–76.

    Google Scholar 

  3. M. S. Roberts and M. Rowland. Hepatic elimination-dispersion model.J. Pharm. Sci. 74:585–587 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. K. S. Pang and M. Rowland. Hepatic clearance of drugs. 1. Theoretical considerations of a “well stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  5. O. Levenspiel.Chemical Reaction Engineering, Wiley, New York, 1972, pp. 253–315.

    Google Scholar 

  6. L. Bass, P. J. Robinson, and A. J. Bracken. Hepatic elimination of flowing substances: The distributed mode.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. E. L. Forker and B. Luxon. Hepatic transport kinetics and plasma disappearance curves: distributed modeling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).

    CAS  PubMed  Google Scholar 

  8. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 2. Steady-state considerations. Influence of blood flow, protein binding and hepatocellular enzymatic activity.J. Pharmacokin. Biopharm. 14:261–288 (1986).

    Article  CAS  Google Scholar 

  9. L. Bass. Convection-dispersion modelling of hepatic elimination.J. Pharm. Sci. 75:321–322 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. L. Bass, M. S. Roberts, and P. J. Robinson. On the relation between extended forms of the sinusoidal perfusion and of the convection-dispersion models of hepatic elimination.J. Theor. Biol. 126:457–482 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. M. Weiss. Moments of physiological transit time distributions and time course of drug disposition in the body.J. Math. Biol. 15:305–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  13. J. J. Gumucio and D. L. Miller. Functional implications of liver cell heterogeneity.Gastroenterology 60:393–403 (1981).

    Google Scholar 

  14. C. A. Goresky. Kinetic interpretation of hepatic multiple-indicator dilution studies.Am. J. Physiol. 245:G1-G12 (1983).

    CAS  PubMed  Google Scholar 

  15. C. P. Rose and C. A. Goresky. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation.Circ. Res. 39:541–554 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 3. Application to metabolite formation and elimination kinetics.J. Pharmacokin. Biopharm. 14:289–308 (1986).

    Article  CAS  Google Scholar 

  17. M. S. Roberts and M. Rowland. Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics; analysis with a dispersion model.J. Pharm. Pharmacol. 38:117–181 (1986).

    Article  Google Scholar 

  18. N. L. Johnson and S. Kotz.Continuous Univariant Distributions—1, Houghton Mifflin, Boston, 1970, pp. 137–153.

    Google Scholar 

  19. M. C. K. Tweedie. Functions of a statistical variate with given means with special reference to Laplacian distributions.Proc. Cambr. Phil. Soc. 41:41–49 (1947).

    Article  Google Scholar 

  20. C. W. Sheppard.Basic Principles of the Tracer Method, Wiley, New York, 1962, pp. 166–213.

    Google Scholar 

  21. M. E. Wise. Tracer dilution curves in cardiology and random walk and lognormal distributions.Acta Physiol. Pharmacol. Neerland. 4:175–204 (1966).

    Google Scholar 

  22. M. Weiss. Use of gamma distributed residence times in pharmacokinetics.Eur. J. Clin. Pharmacol. 25:695–702 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. N. L. Johnson and S. Kotz.Continuous Univeriant Distributions—1, Houghton Mifflin, Boston, 1970, pp. 166–206.

    Google Scholar 

  24. C. Y. Wen and L. T. Fan.Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York, 1985, pp. 281–330.

    Google Scholar 

  25. B. A. Buffham and L. G. Gibilaro. A generalisation of the tank-in-series mixing model.Am. Inst. Chem. Eng. J. 14:805–806 (1968).

    Article  Google Scholar 

  26. A. W. Wolkoff, C. A. Goresky, J. Sellin, Z. Gatmaitan, and I. M. Arias. Role of ligandin in transfer of bilirubin from plasma into liver.Am. J. Physiol. 236:E636-E648 (1979).

    Google Scholar 

  27. A. B. Ahmad. Ph.D. thesis, University of Bath (1982).

  28. F. Galton. The geometric mean in vital and social statistics.Proc. Roy. Soc. London 29:365–367 (1879).

    Article  Google Scholar 

  29. K. V. Bury.Statistical Models in Applied Science, Wiley, New York, 1974, p. 279.

    Google Scholar 

  30. S. Keiding and E. Chiaratini. Effect of sinusoidal perfusion on galactose elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 205:415–470 (1978).

    Google Scholar 

  31. S. Keiding and E. Steiness. Flow dependence of propranolol elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 230:474–477 (1984).

    CAS  PubMed  Google Scholar 

  32. K. L. Zierler. Theory on the use of arterio venous concentration differences for measuring metabolism in steady and non-steady states.J. Clin. Invest 40:2111–2125 (1961).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic drug clearance model: comparison among the distributed, parallel-tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharm. Biopharm. 1:123–136 (1973).

    Article  CAS  Google Scholar 

  35. P. V. Pederson. Curve fitting and modelling in pharmacokinetics and some practical experience with NONLIN and a new programme FUNFIT.J. Pharmacokin. Biopharm. 5:513–531 (1977).

    Article  Google Scholar 

  36. K. S. Pang and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5: 655–680 (1977).

    Article  CAS  Google Scholar 

  37. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the “well-stirred” and “ parallel-tube” models.J. Pharm. Pharmacol. 35:219–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. D. B. Jones, D. J. Morgan, G. W. Mihaly, L. K. Webster, and R. A. Smallwood. Discrimination between venous equilibrium and sinusoidal models of hepatic drug elimination in isolated perfused rat liver by perturbation of propranolol protein binding.J. Pharmacol. Exp. Ther. 229:522–526 (1984).

    CAS  PubMed  Google Scholar 

  39. L. Bass. Flow dependence of first-order uptake of substances by heterogeneously perfused organs.J. Theor. Biol. 86:365–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  40. E. L. Forker and B. A. Luxon. Hepatic transport kinetics: effect of an anatomic and metabolic heterogeneity on estimates of the average transfer coefficients.Am. J. Physiol. 243: G532-G540 (1982).

    CAS  PubMed  Google Scholar 

  41. E. L. Forker and B. A. Luxon. Albumin binding and hepatic uptake: the importance of model selection.J. Pharm. Sci. 72:1322–1323 (1983).

    Article  Google Scholar 

  42. L. M. Riccardi.Diffusion Processes and Related Topics in Biology. Lecture Notes in Biomathematics, Vol. 14, Springer, New York, 1977, pp. 59–65.

    Book  Google Scholar 

  43. J. F. Wehner and R. H. Wilhelm. Boundary conditions of flow reactor.Chem. Eng. Sci. 8:89–93 (1956).

    Article  Google Scholar 

  44. R. A. Weisiger. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver.Proc. Natl. Acad. Sci. (U.S.)82:1563–1567 (1985).

    Article  CAS  Google Scholar 

  45. R. A. Weisiger, C. M. Mendel, and R. C. Cavalieri. The hepatic sinusoid is not well-stirred. Estimation of the degree of axial mixing by analysis of lobuler concentration gradients formed during uptake of thyroxine by the perfused rat liver.J. Pharm. Sci. 75: 233–237 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. L. Bass. Saturation kinetics in hepatic drug removal: A statistical approach to functional heterogeneity.Am. J. Physiol. 244:G583-G589 (1983).

    CAS  PubMed  Google Scholar 

  47. A. Koo, I. Y. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat.Quart. J. Exp. Physiol. 60:261–266 (1975).

    Article  CAS  PubMed  Google Scholar 

  48. J. L. Folks and R. S. Chhikara. The inverse gaussian distribution and its statistical application—A review.J. Roy. Stat. Soc. B40:263–289 (1978).

    Google Scholar 

  49. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: The transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. K. S. Pang and R. N. Stillweil. An understanding of the role of enzyme localisation of the liver on metabolite kinetics: A computer simulation.J. Pharmacokin. Biopharm. 11:451–468 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.S., Donaldson, J.D. & Rowland, M. Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination. Journal of Pharmacokinetics and Biopharmaceutics 16, 41–83 (1988). https://doi.org/10.1007/BF01061862

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061862

Key words

Navigation