Skip to main content

Old and New Peptide Receptor Targets in Cancer: Future Directions

  • Conference paper
  • First Online:
Book cover Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

A precise definition of the tumor tissue targets to be selected for in vivo peptide receptor targeting, namely to know which peptide receptor is expressed in which type of cancer, is an important prerequisite for successful clinical application of this technology. In this short review, I give three selected examples of new and promising peptide receptor targets. In the somatostatin receptor field, based on in vitro receptor autoradiography experiments showing that much more sst2 binding sites are detected in tumors using a 177Lu-labeled sst2 antagonist than a 177Lu-labeled agonist, it can be proposed that, in addition to neuroendocrine tumors, nonneuroendocrine tumors with lower sst2 levels such as breast carcinomas, renal cell carcinomas, and non-Hodgkin lymphomas may become potential candidates for sst2 antagonist targeting. In the gastrin-releasing peptide receptor field, recent in vitro data show that not only tumor cells may overexpress gastrin-releasing peptide receptors but also neoangiogenic tumoral vessels, making tumors expressing high levels of gastrin-releasing peptide receptors in tumor vessels, such as ovarian or urinary tract cancers, attractive new candidates for gastrin-releasing peptide receptor targeting. In the incretin receptor field, it was found in vitro that, apart from glucagon-like peptide 1 receptors overexpressed in benign insulinomas, incretin receptors, especially the glucose-dependent insulinotropic polypeptide receptors, can be overexpressed in medullary thyroid cancers, an unexpected finding making also these tumors potential novel candidates for incretin receptor targeting. Due to the abundance of peptide receptors in various cancers, it may be possible in the future to define for each tumor type a corresponding overexpressed peptide receptor suitable for targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GLP-1:

Glucagon-like peptide 1

GRP:

Gastrin-releasing peptide

VEGF:

Vascular endothelial growth factor

GIP:

Glucose-dependent insulinotropic polypeptide

References

  • Bjenning C, Farrell AP, Holmgren S (1991) Bombesin-like immunoreactivity in skates and the in vitro effect of bombesin on coronary vessels from the longnose skate, Raja rhina. Regul Pept 35:207–219

    Article  PubMed  CAS  Google Scholar 

  • Bunnett G (1994) Gastrin-releasing peptide. Gut peptides: biochemistry and physiology, New York pp 423–445

    Google Scholar 

  • Cescato R, Maina T, Nock B et al (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326

    Article  PubMed  CAS  Google Scholar 

  • Cescato R, Waser B, Fani M et al (2011) Evaluation of 177Lu-DOTA-SST2-antagonist versus 177Lu-DOTA-SST2-agonist binding in human cancers in vitro. J Nucl Med 52:1886–1890

    Article  PubMed  CAS  Google Scholar 

  • Christ E, Wild D, Forrer F et al (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405

    Article  PubMed  CAS  Google Scholar 

  • Clive S, Jodrell D, Webb D (2001) Gastrin-releasing peptide is a potent vasodilator in humans. Clin Pharmacol Ther 69:252–259

    Article  PubMed  CAS  Google Scholar 

  • Ehses JA, Casilla VR, Doty T et al (2003) Glucose-dependent insulinotropic polypeptide promotes beta-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology 144:4433–4445

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann A, Waser B, Reubi JC (2007) Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms. Cell Oncol 29:421–433

    PubMed  CAS  Google Scholar 

  • Fleischmann A, Waser B, Reubi JC (2009) High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications. Endocr Relat Cancer 16:623–633

    Article  PubMed  CAS  Google Scholar 

  • Ginj M, Zhang H, Waser B et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA 103:16436–16441

    Article  PubMed  CAS  Google Scholar 

  • Gugger M, Reubi JC (1999) GRP receptors in non-neoplastic and neoplastic human breast. Am J Pathol 155:2067–2076

    Article  PubMed  CAS  Google Scholar 

  • Heuser M, Schlott T, Schally AV et al (2005) Expression of gastrin releasing Peptide receptor in renal cell carcinomas: a potential function for the regulation of neoangiogenesis and microvascular perfusion. J Urol 173:2154–2159

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136

    Article  PubMed  CAS  Google Scholar 

  • Irwin N, Flatt PR (2009) Therapeutic potential for GIP receptor agonists and antagonists. Best Pract Res Clin Endocrinol Metab 23:499–512

    Article  PubMed  CAS  Google Scholar 

  • Jensen JA, Carroll RE, Benya RV (2001) The case for gastrin-releasing peptide acting as a morphogen when it and its receptor are aberrantly expressed in cancer. Peptides 22:689–699

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, McKinnis VS, White SR (1997) Migration of guinea pig airway epithelial cells in response to bombesin analogues. Am J Respir Cell Mol Biol 16:259–266

    PubMed  CAS  Google Scholar 

  • Kim SJ, Nian C, Widenmaier S et al (2008) Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol Cell Biol 28:1644–1656

    Article  PubMed  CAS  Google Scholar 

  • Korner M, Stockli M, Waser B et al (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48:736–743

    Article  PubMed  CAS  Google Scholar 

  • Levine L, Licci JA 3rd, Townsend CM Jr et al (2003a) Expression of gastrin-releasing peptide receptors in endometrial cancer. J Am Coll Surg 196:898–904

    Article  PubMed  Google Scholar 

  • Levine L, Lucci JA 3rd, Pazdrak B et al (2003b) Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63:3495–3502

    PubMed  CAS  Google Scholar 

  • Luu TN, Chester AH, O’Neil GS et al (1993) Different responses of the human gastroepiploic and internal mammary arteries to vasoactive peptides. Am J Physiol 264:H583–H587

    PubMed  CAS  Google Scholar 

  • Maecke HR, Reubi JC (2011) Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med 52:841–844

    Article  PubMed  CAS  Google Scholar 

  • Mansi R, Wang X, Forrer F et al (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    Article  PubMed  CAS  Google Scholar 

  • Mansi R, Wang X, Forrer F et al (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38:97–107

    Article  PubMed  CAS  Google Scholar 

  • Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    PubMed  CAS  Google Scholar 

  • Oberg KE, Reubi JC, Kwekkeboom DJ et al (2010) Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 139:742–753 753 e741

    Article  PubMed  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC (2007) Targeting CCK receptors in human cancers. Curr Top Med Chem 7:1239–1242

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Fleischmann A, Waser B et al (2011) Concomitant vascular GRP-receptor and VEGF-receptor expression in human tumors: molecular basis for dual targeting of tumoral vasculature. Peptides 32:1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Macke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46:67S–75S

    PubMed  CAS  Google Scholar 

  • Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumors as molecular basis for in vivo multireceptor tumor targeting. Eur J Nucl Med 30:781–793

    Article  CAS  Google Scholar 

  • Waser B, Beetschen K, Pellegata NS et al (2011) Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology 94:291–301

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Caplin M, Christ E et al (2011a) Glucagon-like peptide-1 vs. somatostatin receptor targeting in malignant insulinomas. J Nucl Med 52:1073–1078

    Article  PubMed  Google Scholar 

  • Wild D, Fani M, Behe M et al (2011b) First clinical evidence that imaging with somatostatin receptor antagonists is clinically feasible. J Nucl Med 52:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Mäcke H, Christ E et al (2008) Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med 359:766–768

    Article  PubMed  CAS  Google Scholar 

  • Yule KA, White SR (1999) Migration of 3T3 and lung fibroblasts in response to calcitonin gene-related peptide and bombesin. Exp Lung Res 25:261–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Claude Reubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reubi, J.C. (2013). Old and New Peptide Receptor Targets in Cancer: Future Directions. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics