Skip to main content

SGLT Inhibitors as New Therapeutic Tools in the Treatment of Diabetes

  • Chapter
  • First Online:
Book cover Diabetes - Perspectives in Drug Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 203))

Abstract

Recently, the idea has been developed to lower blood glucose levels in diabetes by inhibiting sugar reabsorption in the kidney . The main target is thereby the early proximal tubule where secondary active transport of the sugar is mediated by the sodium-d-glucose cotransporter SGLT2 . A model substance for the inhibitors is the O-glucoside phlorizin which inhibits transport competitively. Its binding to the transporter involves at least two different domains: an aglucone binding site at the transporter surface, involving extramembranous loops , and the sugar binding /translocation site buried in a hydrophilic pocket of the transporter. The properties of these binding sites differ between SGLT2 and SGLT1 , which mediates sugar absorption in the intestine . Various O-, C-, N- and S-glucosides have been synthesized with high affinity and high specificity for SGLT2 . Some of these glucosides are in clinical trials and have been proven to successfully increase urinary glucose excretion and to decrease blood sugar levels without the danger of hypoglycaemia during fasting in type 2 diabetes .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Yasuda K, Okamoto Y, Shihara N, Oku A, Ueta K, Kitamura K, Saito A, Iwakura I, Yamada Y, Yano H, Seino Y, Tsuda K (2000) T-1095, a renal Na+-glucose transporter inhibitor, improves hyperglycemia in streptozotocin-induced diabetic rats . Metabolism 49:990–995

    Article  CAS  PubMed  Google Scholar 

  • Adrogue HJ (1992) Glucose homeostasis and the kidney . Kidney Int 42:1266–1282

    Article  CAS  PubMed  Google Scholar 

  • Althoff T, Hentschel H, Luig J, Schutz H, Kasch M, Kinne RK (2006) Na+-D-glucose cotransporter in the kidney of Squalus acanthias: molecular identification and intrarenal distribution . Am J Physiol Regul Integr Comp Physiol 290:R1094–R1104

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Ishihara T, Oku A, Nawano M, Ueta K, Kitamura K, Matsumoto M, Saito A (2001) Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na+-glucose cotransporter inhibitor T-1095 . Br J Pharmacol 132:578–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use . Glycobiology 13:93R–104R

    Article  CAS  PubMed  Google Scholar 

  • Berglund O, Frankel BJ, Hellman B (1978) Development of the insulin secretory defect in genetically diabetic (db/db) mouse . Acta Endocrinol (Copenh) 87:543–551

    CAS  Google Scholar 

  • Bode F, Baumann K, Frasch W, Kinne R (1970) Binding of phlorhizin to the brushborder fraction of rat kidney . Pflugers Arch 315:53–65

    Article  CAS  PubMed  Google Scholar 

  • Brot-Laroche E, Supplisson S, Delhomme B, Alcalde AI, Alvarado F (1987) Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside . Biochim Biophys Acta 904:71–80

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt G, Kinne RKH (1992) Transport proteins. Cotransporters and countertransporters. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. New York, Raven, pp 537–586

    Google Scholar 

  • Calado J, Sznajer Y, Metzger D, Rita A, Hogan MC, Kattamis A, Scharf M, Tasic V, Greil J, Brinkert F, Kemper MJ, Santer R (2008) Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion . Nephrol Dial Transplant 12:1–6

    Google Scholar 

  • Castaneda F, Kinne RKH (2005) A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport . Mol Cell Biochem 280:91–98

    Article  CAS  PubMed  Google Scholar 

  • Castaneda F, Burse A, Boland W, Kinne RK (2007) Thioglycosides as inhibitors of hSGLT1 and hSGLT2: potential therapeutic agents for the control of hyperglycemia in diabetes . Int J Med Sci 4:131–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceriello A (2005) PROactive Study: (r)evolution in the therapy of diabetes? Diabet Med 22:1463–1464

    Article  PubMed  Google Scholar 

  • de Melo EB, Gomes AD, Carvalho I (2006) alpha- and beta-Glucosidase inhibitors: chemical structure and biological activity . Tetrahedron 62:10277–10302

    Article  Google Scholar 

  • DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus . Med Clin North Am 88:787

    Article  CAS  PubMed  Google Scholar 

  • Dudash J Jr, Zhang X, Zeck RE, Johnson SG, Cox GG, Conway BR, Rybczynski PJ, Demarest KT (2004) Glycosylated dihydrochalcones as potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitors. Bioorg Med Chem Lett 14(20):5121–5125

    Article  Google Scholar 

  • Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review . Diab Metab Res Rev 21:31–38

    Article  CAS  Google Scholar 

  • Elfeber K, Stumpel F, Gorboulev V, Mattig S, Deussen A, Kaissling B, Koepsell H (2004) Na+-D-glucose cotransporter in muscle capillaries increases glucose permeability . Biochem Biophys Res Commun 314:301–305

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth BA, Meng W, Patel M, Girotra RN, Wu G, Sher PM, Hagan DL, Obermeier MT, Humphreys WG, Robertson JG, Wang A, Han S, Waldron TL, Morgan NN, Whaley JM, Washburn WN (2008) Aglycone exploration of C-arylglucoside inhibitors of renal sodium-dependent glucose transporter SGLT2 . Bioorg Med Chem Lett 18:4770–4773

    Article  CAS  PubMed  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 3:1–5

    Google Scholar 

  • Feld LG (2001) Renal glycosuria. e Med J 2:1–6

    Google Scholar 

  • Finkelstein SM, Bleicher MA, Batthany S, Tiefenbrun J (1975) In vivo modeling for glucose homeostasis. IEEE Trans Biomed Eng 22:47–52

    Article  CAS  PubMed  Google Scholar 

  • Firnges MA, Lin JT, Kinne RKH (2001) Functional asymmetry of the sodium-D-glucose cotransporter expressed in yeast secretory vesicles . J Membr Biol 179:143–153

    Article  CAS  PubMed  Google Scholar 

  • Fujimori Y, Katsuno K, Nakashima I, Ishikawa-Takemura Y, Fujikura H, Isaji M (2008) Remogliflozin etabonate, in a novel category of selective low-affinity / high-capacity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models . J Pharmacol Exp Ther 327:268–276

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T (1988) Development of diabetes in the non-obese NIDDM rat (GK rat). Adv Exp Med Biol 246:29–31

    Article  CAS  PubMed  Google Scholar 

  • Hanefeld M, Forst T (2010) Dapagliflozin, an SGLT2 inhibitor, for diabetes . Lancet 375:2196–2198

    Article  PubMed  Google Scholar 

  • Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    Article  CAS  PubMed  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes . Metabolism 26:59–99

    Article  CAS  PubMed  Google Scholar 

  • Hongu M, Funami N, Takahashi Y, Saito K, Arakawa K, Matsumoto M, Yamakita H, Tsujihara K (1998a) Na+-glucose cotransporter inhibitors as antidiabetic agents. III. Synthesis and pharmacological properties of 4'-dehydroxyphlorizin derivatives modified at the OH groups of the glucose moiety . Chem Pharm Bull 46:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Hongu M, Tanaka T, Funami N, Saito K, Arakawa K, Matsumoto M, Tsujihara K (1998b) Na+-glucose cotransporter inhibitors as antidiabetic agents. II. Synthesis and structure-activity relationships of 4'-dehydroxyphlorizin derivatives . Chem Pharm Bull 46:22–33

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa K, Yamato T, Ojima K, Tsuji A, Ishikawa K, Kusama H, Kojima M (2002) Effect of KAD-1229, a novel hypoglycaemic agent, on plasma glucose levels after meal load in type 2 diabetic rats . Clin Exp Pharmacol Physiol 29:423–427

    Article  CAS  PubMed  Google Scholar 

  • Ikenoue T, Okazaki K, Fujitani S, Tsuchiya Y, Akiyoshi M, Maki T, Kondo N (1997) Effect of a new hypoglycemic agent, A-4166 [(-)-N-(trans-4-isopropyl-cyclohexanecarbonyl)-D-phenylalanine], on postprandial blood glucose excursion: Comparison with voglibose and glibenclamide. 7 . Biol Pharm Bull 20:354–359

    Article  CAS  PubMed  Google Scholar 

  • Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Bonner-Weir S, Weir GC (1999) Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes . J Biol Chem 274:14112–14121

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose . J Clin Invest 93:397–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsuno K, Fujimori Y, Takemura Y, Hiratochi M, Itoh F, Komatsu Y, Fujikura H, Isaji M (2007) Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level . J Pharmacol Exp Ther 320:323–330

    Article  CAS  PubMed  Google Scholar 

  • Kimmich GA (1990) Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport. J Membr Biol 114(1):1–27. Review

    Article  Google Scholar 

  • Kinne RKH (1991) Selectivity and direction – plasma-membranes in renal transport . Am J Physiol 260:F153–F162

    CAS  PubMed  Google Scholar 

  • Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs G (1975) Sugar-transport by renal plasma-membrane vesicles – Characterization of systems in brush-border microvilli and basal-lateral plasma-membranes . J Membr Biol 21:375–395

    Article  CAS  PubMed  Google Scholar 

  • Kipp H, Kinne-Saffran E, Bevan C, Kinne RK (1997) Characteristics of renal Na+-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias) . Am J Physiol 273:R134–R142

    CAS  PubMed  Google Scholar 

  • Kissei Pharmaceutical Co. Ltd. (2009) Discontinuation of the development of “Remogliflozin” by GlaxoSmithKline, News Release July 3

    Google Scholar 

  • Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, Malone JI, Wall BM (2001) Management of hyperglycemic crises in patients with diabetes. Diab Care 24:131–153

    Article  CAS  Google Scholar 

  • Kleta R, Stuart C, Gill FA, Gahl WA (2004) Renal glucosuria due to SGLT2 mutations . Mol Genet Metab 82:56–58

    Article  CAS  PubMed  Google Scholar 

  • Landsdell MI, Burring DJ, Hepworth D, Strawbridge M, Graham E, Guyot T, Betson MS, Hart JD (2008) Design and synthesis of fluorescent SGLT2 inhibitors . Bioorg Med Chem Lett 18:4944–4947

    Article  Google Scholar 

  • Li JM, Che CT, Lau CBS, Leung PS, Cheng CHK (2007) Desoxyrhaponticin (3, 5-dihydroxy-4'-methoxystilbene 3-O-beta-D-glucoside) inhibits glucose uptake in the intestine and kidney: In vitro and in vivo studies . J Pharmacol Exp Ther 320:38–46

    Article  CAS  PubMed  Google Scholar 

  • Lin JT, Kormanec J, Wehner F, Wielert-Badt S, Kinne RKH (1998) High-level expression of Na+/D-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line . Biochim Biophys Acta: Biomembr 1373:309–320

    Article  CAS  Google Scholar 

  • Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes . J Med Chem 51:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Morrison AI, Panayotova-Heiermann M, Feigl G, Scholermann B, Kinne RKH (1991) Sequence comparison of the sodium-D-glucose cotransport systems in rabbit renal and intestinal epithelia . Biochim Biophys Acta 1089:121–123

    Article  CAS  PubMed  Google Scholar 

  • Murer H, Hopfer U, Kinne-Saffran E, Kinne R (1974) Glucose transport in isolated brush-border and lateral-basal plasma-membrane vesicles from intestinal epithelial cells . Biochim Biophys Acta 345:170–179

    Article  CAS  PubMed  Google Scholar 

  • Neumiller JJ, White JR Jr, Campbell RK (2010) Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus . Drugs 70:377–385

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Sakamaki S, Hongu M, Kawanishi E, Koga Y, Sakamoto T, Yamamoto Y, Ueta K, Kimata H, Nakayama K, Tsuda-Tsukimoto M (2010) Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus . J Med Chem 53:6355–6360

    Article  CAS  PubMed  Google Scholar 

  • Novakova R, Homerova D, Kinne RK, Kinne-Saffran E, Lin JT (2001) Identification of a region critically involved in the interaction of phlorizin with the rabbit sodium-D-glucose cotransporter SGLT1 . J Membr Biol 184:55–60

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi K, Matsueda H, Hatanaka T, Hirama R, Umemura T, Oonuki A, Ishida N, Kageyama Y, Maezono K, Kondo N (2003) Pyrazole-O-glucosides as novel Na+-glucose cotransporter (SGLT) inhibitors . Bioorg Med Chem Lett 13:2269–2272

    Article  CAS  PubMed  Google Scholar 

  • Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y, Endou H (1999) T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes . Diabetes 48:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Oku A, Ueta K, Arakawa K, Kano-Ishihara T, Matsumoto M, Adachi T, Yasuda K, Tsuda K, Saito A (2000a) Antihyperglycemic effect of T-1095 via inhibition of renal Na+-glucose cotransporters in streptozotocin-induced diabetic rats . Biol Pharm Bull 23:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Oku A, Ueta K, Arakawa K, Kano-Ishihara T, Matsumoto T, Adachi T, Yasuda K, Tsuda K, Ikezawa K, Saito A (2000b) Correction of hyperglycemia and insulin sensitivity by T-1095, an inhibitor of renal Na+-glucose cotransporters, in streptozotocin-induced diabetic rats . Jpn J Pharmacol 84:351–354

    Article  CAS  PubMed  Google Scholar 

  • Oku A, Ueta K, Nawano M, Arakawa K, Kano-Ishihara T, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T (2000c) Antidiabetic effect of T-1095, an inhibitor of Na+-glucose cotransporter, in neonatally streptozotocin-treated rats . Eur J Pharmacol 391:183–192

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM, Randolph KM, Kerner SA, Smith CD (2008) Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters . J Pharmacol Exp Ther 324:985–991

    Article  CAS  PubMed  Google Scholar 

  • Parent L, Supplisson S, Loo DDF, Wright EM (1992a) Electrogenic properties of the cloned Na+ glucose cotransporter. 1. Voltage-clamp studies. J Membr Biol 125:49–62

    CAS  PubMed  Google Scholar 

  • Parent L, Supplisson S, Loo DDF, Wright EM (1992b) Electrogenic properties of the cloned Na+ glucose cotransporter. 2. A transport model under nonrapid equilibrium conditions . J Membr Biol 125:63–79

    CAS  PubMed  Google Scholar 

  • Patterson JE, Andriole VT (1995) Bacterial urinary-tract infections in diabetes. Infect Dis Clin North Am 9:25–51

    CAS  PubMed  Google Scholar 

  • Puntheeranurak T, Wildling L, Gruber HJ, Kinne RK, Hinterdorfer P (2006) Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells . J Cell Sci 119:2960–2967

    Article  CAS  PubMed  Google Scholar 

  • Puntheeranurak T, Kasch M, Xia X, Hinterdorfer P, Kinne RK (2007a) Three surface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1 . J Biol Chem 282:25222–25230

    Article  CAS  PubMed  Google Scholar 

  • Puntheeranurak T, Wimmer B, Castaneda F, Gruber HJ, Hinterdorfer P, Kinne RKH (2007b) Substrate specificity of sugar transport by rabbit SGLT1: single molecule AFM versus transport . Biochemistry 46:2797–2804

    Article  CAS  PubMed  Google Scholar 

  • Raja MM, Tyagi NK, Kinne RKH (2003) Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling . J Biol Chem 278:49154–49163

    Article  CAS  PubMed  Google Scholar 

  • Sakhrani LM, Badiedezfooly B, Trizna W, Mikhail N, Lowe AG, Taub M, Fine LG (1984) Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am J Physiol 246:F757–F764

    CAS  PubMed  Google Scholar 

  • Scholl-Burgi S, Santer R, Ehrich JHH (2004) Long-term outcome of renal glucosuria type 0: the original patient and his natural history . Nephrol Dial Transplant 19:2394–2396

    Article  PubMed  Google Scholar 

  • Stuart IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins . Br J Nutr 89:3–9

    Google Scholar 

  • Tsujihara K, Hongu M, Saito K, Inamasu M, Arakawa K, Oku A, Matsumoto M (1996) Na+-glucose cotransporter inhibitors as antidiabetics. 1. Synthesis and pharmacological properties of 4'-Dehydroxyphlorizin derivatives based on a new concept . Chem Pharm Bull 44:1174–1180

    Article  CAS  PubMed  Google Scholar 

  • Tsujihara K, Hongu M, Saito K, Kawanishi H, Kuriyama K, Matsumoto H, Oku A, Ueta K, Tsuda M, Saito A (1999) Na+-glucose cotransporter (SGLT) inhibitors as antidiabetic agents. 4. Synthesis and pharmacological properties of 4'-dehydroxyphlorizin derivatives substituted on the B ring . J Med Chem 42:5311–5324

    Article  CAS  PubMed  Google Scholar 

  • Tyagi NK, Goyal P, Kumar A, Pandey D, Siess W, Kinne RK (2005) High-yield functional expression of human sodium-D-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence . Biochemistry 44:15514–15524

    Article  CAS  PubMed  Google Scholar 

  • Tyagi NK, Kumar A, Goyal P, Pandey D, Siess W, Kinne RK (2007) D-glucose-recognition and phlorizin-binding sites in human sodium-D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study . Biochemistry 46:13616–13628

    Article  CAS  PubMed  Google Scholar 

  • Tyagi NK, Puntheeranurak T, Raja M, Kumar A, Wimmer B, Neundlinger I, Gruber H, Hinterdorfer P, Kinne RK (2011) A biophysical glance at the outer surface of the membrane transporter SGLT1. Biochim Biophys Acta 1808(1):1–18, Epub 2010 Aug 6

    Google Scholar 

  • Ueta K, Ishihara T, Matsumoto Y, Oku A, Nawano M, Fujita T, Saito A, Arakawa K (2005) Long-term treatment with the Na+-glucose cotransporter inhibitor T-1095 causes sustained improvement in hyperglycemia and prevents diabetic neuropathy in Goto-Kakizaki Rats . Life Sci 76:2655–2668

    Article  CAS  PubMed  Google Scholar 

  • Ueta K, Yoneda H, Oku A, Nishiyama S, Saito A, Arakawa K (2006) Reduction of renal transport maximum for glucose by inhibition of Na+-glucose cotransporter suppresses blood glucose elevation in dogs . Biol Pharm Bull 29:114–118

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel LP, Assink K, Willemsen M, Monnens L (2002) Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2) . Hum Genet 111:544–547

    Article  PubMed  Google Scholar 

  • Venkatraman R, Singhi SC (2006) Hyperglycemic hyperosmolar nonketotic syndrome. Indian J Pediatr 73:55–60

    Article  CAS  PubMed  Google Scholar 

  • Vick H, Diedrich DF, Baumann K (1973) Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs . Am J Physiol 224:552–557

    CAS  PubMed  Google Scholar 

  • Washburn WN (2009) Evolution of sodium glucose co-transporter 2 inhibitors as anti-diabetic agents . Expert Opin Ther Pat 19:1485–1499

    Article  CAS  PubMed  Google Scholar 

  • Weinglass AB, Swensen AM, Liu J, Schmalhofer W, Thomas A, Williams B, Ross L, Hashizume K, Kohler M, Kaczorowski GJ, Garcia ML (2008) A high-capacity membrane potential FRET-based assay for the sodium-coupled glucose co-transporter SGLT1 . Assay Drug Dev Technol 6:255–262

    Article  CAS  PubMed  Google Scholar 

  • Wielert-Badt S, Lin JT, Lorenz M, Fritz S, Kinne RK (2000) Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis . J Med Chem 43:1692–1698

    Article  CAS  PubMed  Google Scholar 

  • Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease . J Intern Med 261:32–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Urbanski M, Patel M, Cox GG, Zeck RE, Bian HY, Conway BR, Beavers MP, Rybczynski PJ, Demarest KT (2006) Indole-glucosides as novel sodium glucose co-transporter 2 (SGLT2) inhibitors. Part 2 . Bioorg Med Chem Lett 16:1696–1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christine Riemer, for her outstanding organizational skill and computer proficiency, as well as her endurance and patience. Without her, the writing of this chapter while travelling between two continents would not have been possible. Also, the enthusiastic and untiring support of the staff of the library of the Max Planck Institute, particularly Christiane Berse and Jürgen Block is gratefully acknowledged. In the analysis of the differences of the aglucone binding site of hSGLT1 and hSGLT2 , Dr. Thorsten Althoff, now at the Max Planck Institute of Biophysics in Frankfurt, Germany, provided essential help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf K. H. Kinne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kinne, R.K.H., Castaneda, F. (2011). SGLT Inhibitors as New Therapeutic Tools in the Treatment of Diabetes. In: Schwanstecher, M. (eds) Diabetes - Perspectives in Drug Therapy. Handbook of Experimental Pharmacology, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17214-4_5

Download citation

Publish with us

Policies and ethics