Skip to main content

Determination of ADP-Ribosyl Cyclase Activity, Cyclic ADP-Ribose, and Nicotinic Acid Adenine Dinucleotide Phosphate in Tissue Extracts

  • Protocol
  • First Online:
Book cover Cyclic Nucleotide Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1016))

Abstract

Cyclic ADP-ribose (cADPR) is a novel second messenger that releases calcium from intracellular stores. Although first shown to release calcium in the sea urchin egg, cADPR has been shown since to be active in a variety of cells and tissues, from plant to human. cADPR stimulates calcium release via ryanodine receptors although the mechanism is still not completely understood. cADPR is produced enzymatically from NAD by ADP-ribosyl cyclases; several of these proteins have been identified including one isolated from Aplysia californica, two types found in mammals (CD38 and CD157), and three forms in sea urchin. A cyclase activity has been measured in extracts from Arabidopsis thaliana although the protein is still unidentified. Nicotinic acid adenine dinucleotide phosphate (NAADP) is another novel messenger that releases calcium from internal stores and is produced by these same enzymes by an exchange reaction. NAADP targets lysosomal stores whereas cADPR releases calcium from the endoplasmic reticulum. Due to their importance in cell signaling, cADPR and NAADP have been the focus of numerous investigations over the last 25 years. This chapter describes several assay methods for the measurements of cADPR and NAADP concentration and cyclase activity in extracts from cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP-ribose:

Adenine diphosphate-ribose

cADPR:

Cyclic adenine diphosphate-ribose

NAD:

Nicotinamide adenine dinucleotide

NADP:

Nicotinamide adenine dinucleotide phosphate

NAADP:

Nicotinic acid adenine dinucleotide phosphate

NGD:

Nicotinamide guanine dinucleotide

NHD:

Nicotinamide hypoxanthine dinucleotide

PBS:

Phosphate-buffered saline

PCA:

Perchloric acid

TFA:

Trifluoroacetic acid

wt:

Wild type

References

  1. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL (1989) Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem 264:1608–1615

    PubMed  CAS  Google Scholar 

  2. Clapper DL, Walseth TF, Dargie PJ, Lee HC (1987) Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262:9561–9568

    PubMed  CAS  Google Scholar 

  3. Lee HC, Aarhus R (1995) A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270:2152–2157

    Article  PubMed  CAS  Google Scholar 

  4. Rusinko N, Lee HC (1989) Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem 264:11725–11731

    PubMed  CAS  Google Scholar 

  5. Lee HC, Aarhus R (1991) ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul 2:203–209

    PubMed  CAS  Google Scholar 

  6. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059

    Article  PubMed  CAS  Google Scholar 

  7. Love ML, Szebenyi DM, Kriksunov IA, Thiel DJ, Munshi C, Graeff R, Lee HC, Hao Q (2004) ADP-ribosyl cyclase; crystal structures reveal a covalent intermediate. Structure 12:477–486

    Article  PubMed  CAS  Google Scholar 

  8. Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q (2005) Crystal structure of human CD38 extracellular domain. Structure 13:1331–1339

    Article  PubMed  CAS  Google Scholar 

  9. Graeff R, Liu Q, Kriksunov IA, Hao Q, Lee HC (2006) Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem 281:28951–28957

    Article  PubMed  CAS  Google Scholar 

  10. Lee HC, Aarhus R, Levitt D (1994) The crystal structure of cyclic ADP-ribose. Nat Struct Biol 1:143–144

    Article  PubMed  CAS  Google Scholar 

  11. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC (1995) ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 270:30327–30333

    Article  PubMed  CAS  Google Scholar 

  12. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    Article  PubMed  CAS  Google Scholar 

  13. Navazio L, Bewell MA, Siddiqua A, Dickinson GD, Galione A, Sanders D (2000) Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci U S A 97:8693–8698

    Article  PubMed  CAS  Google Scholar 

  14. Munshi CB, Fryxell KB, Lee HC, Branton WD (1997) Large-scale production of human CD38 in yeast by fermentation. Methods Enzymol 280:318–330

    Article  PubMed  CAS  Google Scholar 

  15. Lee HC, Graeff RM, Munshi CB, Walseth TF, Aarhus R (1997) Large-scale purification of Aplysia ADP-ribosylcyclase and measurement of its activity by fluorimetric assay. Methods Enzymol 280:331–340

    Article  PubMed  CAS  Google Scholar 

  16. Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L, Usai C (2001) The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc Natl Acad Sci USA 98:14859–14864

    Article  PubMed  CAS  Google Scholar 

  17. Higashida H, Yokoyama S, Hashii M, Taketo M, Higashida M, Takayasu T, Ohshima T, Takasawa S, Okamoto H, Noda M (1997) Muscarinic receptor-mediated dual regulation of ADP-ribosyl cyclase in NG108-15 neuronal cell membranes. J Biol Chem 272:31272–31277

    Article  PubMed  CAS  Google Scholar 

  18. Sanchez JP, Duque P, Chua NH (2004) ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J 38:381–395

    Article  PubMed  CAS  Google Scholar 

  19. Graeff RM, Walseth TF, Hill HK, Lee HC (1996) Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry 35:379–386

    Article  PubMed  CAS  Google Scholar 

  20. Graeff R, Lee HC (2002) A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem J 361:379–384

    PubMed  CAS  Google Scholar 

  21. Sun L, Adebanjo OA, Koval A, Anandatheerthavarada HK, Iqbal J, Wu XY, Moonga BS, Wu XB, Biswas G, Bevis PJ, Kumegawa M, Epstein S, Huang CL, Avadhani NG, Abe E, Zaidi M (2002) A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP-ribosyl cyclase, a putative intracellular NAD+ sensor. FASEB J 16:302–314

    Article  PubMed  CAS  Google Scholar 

  22. Graeff RM, Walseth TF, Fryxell K, Branton WD, Lee HC (1994) Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem 269:30260–30267

    PubMed  CAS  Google Scholar 

  23. Menegus F, Pace M (1981) Purification and some properties of NAD-glycohydrolase from conidia of Neurospora crassa. Eur J Biochem 113:485–490

    Article  PubMed  CAS  Google Scholar 

  24. Aarhus R, Dickey DM, Graeff RM, Gee KR, Walseth TF, Lee HC (1996) Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem 271:8513–8516

    Article  PubMed  CAS  Google Scholar 

  25. Churchill GC, O’Neill JS, Masgrau R, Patel S, Thomas JM, Genazzani AA, Galione A (2003) Sperm deliver a new second messenger: NAADP. Curr Biol 13:125–128

    Article  PubMed  CAS  Google Scholar 

  26. Churamani D, Carrey EA, Dickinson GD, Patel S (2004) Determination of cellular nicotinic acid-adenine dinucleotide phosphate (NAADP) levels. Biochem J 380:449–454

    Article  PubMed  CAS  Google Scholar 

  27. Graeff R, Lee HC (2002) A novel cycling assay for nicotinic acid-adenine dinucleotide phosphate with nanomolar sensitivity. Biochem J 367:163–168

    Article  PubMed  CAS  Google Scholar 

  28. Gasser A, Bruhn S, Guse AH (2006) Second messenger function of nicotinic acid adenine dinucleotide phosphate revealed by an improved enzymatic cycling assay. J Biol Chem 281:16906–16913

    Article  PubMed  CAS  Google Scholar 

  29. Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878

    Article  PubMed  CAS  Google Scholar 

  30. Walseth TF, Wong L, Graeff RM, Lee HC (1997) Bioassay for determining endogenous levels of cyclic ADP-ribose. Methods Enzymol 280:287–294

    Article  PubMed  CAS  Google Scholar 

  31. Graeff RM, Franco L, De Flora A, Lee HC (1998) Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 273:118–125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an RCGAS seed grant for Basic Research #201105159001 to R.M.G. This work was also supported by grants from the Council of Hong Kong (Nos. 769107, 768408, 769309, and 770610) and the National Natural Science Foundation of China/the Research Grants Council of Hong Kong (No. N_HKU 722/08).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Graeff, R.M., Lee, H.C. (2013). Determination of ADP-Ribosyl Cyclase Activity, Cyclic ADP-Ribose, and Nicotinic Acid Adenine Dinucleotide Phosphate in Tissue Extracts. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics