Skip to main content

The Role of GW182 Proteins in miRNA-Mediated Gene Silencing

  • Chapter
  • First Online:
Ten Years of Progress in GW/P Body Research

Part of the book series: Advances in Experimental Medicine and Biology ((volume 768))

Abstract

GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2–PAN3 and CCR4–NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baillat D, Shiekhattar R (2009) Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 29:4144–4155

    Article  PubMed  CAS  Google Scholar 

  • Bartel PD (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in Zebrafish. Science 336:233–237

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T et al (2006a) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Izaurralde E (2006b) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 71:523–530

    Article  PubMed  CAS  Google Scholar 

  • Béthune J, Artus-Revel CG, Filipowicz W (2012) Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 13(8):716–723

    Article  PubMed  Google Scholar 

  • Bies-Etheve N, Pontier D, Lahmy S et al (2009) RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep 10:649–654

    Article  PubMed  CAS  Google Scholar 

  • Braun JE, Huntzinger E, Fauser M, Izaurralde E (2011) GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44:120–133

    Article  PubMed  CAS  Google Scholar 

  • Buchberger A (2002) From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol 12:216–221

    Article  PubMed  CAS  Google Scholar 

  • Chekulaeva M, Filipowicz W, Parker R (2009) Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15:794–803

    Article  PubMed  CAS  Google Scholar 

  • Chekulaeva M, Parker R, Filipowicz W (2010) The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 38:6673–6683

    Article  PubMed  CAS  Google Scholar 

  • Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W (2011) miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18:1218–1226

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Zheng D, Xia Z et al (2009) Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 16:1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  PubMed  Google Scholar 

  • Cooke A, Prigge A, Wickens M (2010) Translational repression by deadenylases. J Biol Chem 285:28506–28513

    Article  PubMed  CAS  Google Scholar 

  • Derry MC, Yanagiya A, Martineau Y et al (2006) Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol 71:537–543

    Article  PubMed  CAS  Google Scholar 

  • Ding XC, Großhans H (2009) Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 28:213–222

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Han M (2007) GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol 17:411–416

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Spencer A, Morita K et al (2005) The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 19:437–447

    Article  PubMed  CAS  Google Scholar 

  • Djuranovic S, Nahvi A, Green A (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  PubMed  CAS  Google Scholar 

  • El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi MA, Jacobsen SE, Cooke R, Lagrange T. (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21:2539–2544

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Rehwinkel J, Stricker M et al (2007a) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D et al (2007b) P-body formation is a consequence, not the cause of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15:346–353

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Tritschler F, Izaurralde E (2009a) The GW182 protein family in animal cells: new insights into domains required for miRNA mediated gene silencing. RNA 15:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T et al (2009b) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Helms S, Fritzsch C et al (2009c) A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Tritschler F, Buettner R et al (2009d) The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 37:2974–2983

    Article  PubMed  CAS  Google Scholar 

  • Eystathioy T, Chan EK, Tenenbaum SA et al (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Mathonnet G, Sundermeier T et al (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35:868–880

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Cieplak MK, Frank F et al (2011) miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat Struct Mol Biol 18:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Fukaya T, Tomari Y (2011) PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J 30:4998–5009

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  PubMed  CAS  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  PubMed  CAS  Google Scholar 

  • Huntzinger E, Braun EJ, Heimstädt S et al (2010) Two PABP-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J 29:4146–4160

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Kawamata T, Tomari Y (2009) Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34:58–67

    Article  PubMed  CAS  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T et al (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  PubMed  Google Scholar 

  • Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Fabian MR, Coyle SM et al (2010) Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat Struct Mol Biol 17:238–240

    Article  PubMed  CAS  Google Scholar 

  • Kozlov G, Safaee N, Rosenauer A et al (2010) Structural basis of binding of P-body associated protein GW182 and Ataxin-2 by the MLLE domain of poly(A)-binding protein. J Biol Chem 285:13599–13606

    Article  PubMed  CAS  Google Scholar 

  • Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E (2012) The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res 40:5651–5665

    Article  PubMed  Google Scholar 

  • Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596

    Article  PubMed  CAS  Google Scholar 

  • Lazzaretti D, Tournier I, Izaurralde E (2009) The C-terminal domains of human TNRC6A, B and C silence bound transcripts independently of the Argonaute proteins. RNA 15:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Li S, Lian SL, Moser JJ et al (2008) Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J Cell Sci 121:4134–4144

    Article  PubMed  CAS  Google Scholar 

  • Lian SL, Li S, Abadal GX et al (2009) The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15:804–813

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J et al (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    PubMed  Google Scholar 

  • Meister G, Landthaler M, Peters L et al (2005) Identification of novel argonaute-associated proteins. Curr Biol 15:2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Mishima Y, Fukao A, Kishimoto T, Sakamoto H, Fujiwara T, Inoue K (2012) Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc Natl Acad Sci USA 109:1104–1109

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Okada TN, Siomi H et al (2009) Characterization of miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15:1282–1291

    Article  PubMed  CAS  Google Scholar 

  • Moretti F, Kaiser C, Zdanowicz-Specht A, Hentze MW (2012) PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 19:603–608

    Article  PubMed  CAS  Google Scholar 

  • Partridge JF, DeBeauchamp JL, Kosinski AM et al (2007) Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol Cell 26:593–602

    Article  PubMed  CAS  Google Scholar 

  • Piao X, Zhang X, Wu L et al (2010) CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol Cell Biol 30:1486–1494

    Article  PubMed  CAS  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D et al (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647

    Article  PubMed  CAS  Google Scholar 

  • Takimoto K, Wakiyama M, Yokoyama S (2009) Mammalian GW182 contains multiple Argonaute binding sites and functions in microRNA-mediated translational repression. RNA 15:1078–1089

    Article  PubMed  CAS  Google Scholar 

  • Till S, Lejeune E, Thermann R et al (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903

    Article  PubMed  CAS  Google Scholar 

  • Wakiyama M, Takimoto K, Ohara O et al (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Walters RW, Bradrick SS, Gromeier M (2010) Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA 16:239–250

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3′UTRs by embryonic MicroRNA families. Mol Cell 40:558–570

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Li S, Jung HM et al (2011) Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 39:2534–2547

    Article  PubMed  CAS  Google Scholar 

  • Zdanowicz A, Thermann R, Kowalska J et al (2009) Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol Cell 35:881–888

    Article  PubMed  CAS  Google Scholar 

  • Zekri L, Huntzinger E, Heimstädt S et al (2009) The silencing domain of GW182 interacts with PABP to promote translational repression and degradation of miRNA targets and is required for target release. Mol Cell Biol 29:6220–6231

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ding L, Cheung TH et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613

    Article  PubMed  CAS  Google Scholar 

  • Zipprich JT, Bhattacharyya S, Mathys H et al (2009) Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15:781–793

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research in this laboratory is supported by the Max Planck Society and by grants from the Deutsche Forschungsgemeinschaft (DFG, FOR855 and the Gottfried Wilhelm Leibniz Program awarded to E.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Izaurralde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braun, J.E., Huntzinger, E., Izaurralde, E. (2013). The Role of GW182 Proteins in miRNA-Mediated Gene Silencing. In: Chan, E., Fritzler, M. (eds) Ten Years of Progress in GW/P Body Research. Advances in Experimental Medicine and Biology, vol 768. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5107-5_9

Download citation

Publish with us

Policies and ethics