Skip to main content

Role of Reactive Oxygen Species in Chronic Hypoxia-Induced Pulmonary Hypertension and Vascular Remodeling

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

Pulmonary hypertension is a life-threatening disease process that affects adults and children. Pediatric patients with lung diseases that can be complicated by alveolar hypoxia, such as bronchopulmonary dysplasia (BPD), are at risk for developing pulmonary hypertension, which leads to right heart failure and greatly increases morbidity and mortality. We review the evidence that reactive oxygen species (ROS) are generated by pulmonary vascular wall cells in response to a hypoxic exposure, and that this response contributes to chronic hypoxic pulmonary hypertension. We summarize the accumulating data implicating NADPH oxidase as a major source of O2 - responsible for vascular remodeling and hypertension. We also consider the effects of chronic hypoxia on the clearance of O2 - by superoxide dismutases, specifically extracellular superoxide dismutase, which is highly expressed in the pulmonary artery. We review the role of the activated vascular adventitial fibroblast in the generation of ROS and in the pathogenesis of vascular remodeling, and provide a rationale to consider the role of the activated fibroblast and ROS in hypoxic pulmonary hypertension using a clinically relevant bovine model of neonatal chronic hypoxic pulmonary hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardanaz N and Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med (Maywood)231:237-251, 2006.

    CAS  Google Scholar 

  2. Banks MF, Gerasimovskaya EV, Tucker DA, Frid MG, Carpenter TC, and Stenmark KR. Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts. J Appl Physiol98:732-738, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Bochkov VN, Mechtcheriakova D, Lucerna M, Huber J, Malli R, Graier WF, Hofer E, Binder BR, and Leitinger N. Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT. Blood99:199-206, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, and Black SM. Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res92:683-691, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Clempus RE and Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res71:216-225, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Davie NJ, Crossno JT, Jr., Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, and Stenmark KR. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol286: L668-678, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Elmedal B, de Dam MY, Mulvany MJ, and Simonsen U. The superoxide dismutase mimetic, tempol, blunts right ventricular hypertrophy in chronic hypoxic rats. Br J Pharmacol141:105-113, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Fresquet F, Pourageaud F, Leblais V, Brandes RP, Savineau JP, Marthan R, and Muller B. Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol148:714-723, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, and Stenmark KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol168:659-669, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Fu M, Zhu X, Zhang J, Liang J, Lin Y, Zhao L, Ehrengruber MU, and Chen YE. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene315:33-41, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Gerasimovskaya EV, Ahmad S, White CW, Jones PL, Carpenter TC, and Stenmark KR. Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth. Signaling through extracellular signal-regulated kinase-1/2 and the Egr-1 transcription factor. J Biol Chem277:44638-44650, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Griendling KK. Novel NAD(P)H oxidases in the cardiovascular system. Heart90:491-493, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. Herget J, Wilhelm J, Novotna J, Eckhardt A, Vytasek R, Mrazkova L, and Ostadal M. A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res49:493-501, 2000.

    CAS  PubMed  Google Scholar 

  14. Hoshikawa Y, Ono S, Suzuki S, Tanita T, Chida M, Song C, Noda M, Tabata T, Voelkel NF, and Fujimura S. Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol90:1299-1306, 2001.

    CAS  PubMed  Google Scholar 

  15. Jackson IL, Chen L, Batinic-Haberle I, and Vujaskovic Z. Superoxide dismutase mimetic reduces hypoxia-induced O2*-, TGF-beta, and VEGF production by macrophages. Free Radic Res41:8-14, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Jernigan NL, Resta TC, and Walker BR. Contribution of oxygen radicals to altered NO-dependent pulmonary vasodilation in acute and chronic hypoxia. Am J Physiol Lung Cell Mol Physiol286: L947-955, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Keaney JF, Jr. Oxidative stress and the vascular wall: NADPH oxidases take center stage. Circulation112:2585-2588, 2005.

    Article  PubMed  Google Scholar 

  18. Kinnula VL and Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med167:1600-1619, 2003.

    Article  PubMed  Google Scholar 

  19. Lachmanova V, Hnilickova O, Povysilova V, Hampl V, and Herget J. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci77:175-182, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Lai YL, Wu HD, and Chen CF. Antioxidants attenuate chronic hypoxic pulmonary hypertension. J Cardiovasc Pharmacol32:714-720, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Lakshminrusimha S, Russell JA, Wedgwood S, Gugino SF, Kazzaz JA, Davis JM, and Steinhorn RH. Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med174:1370-1377, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Langleben D, Fox RB, Jones RC, and Reid LM. Effects of dimethylthiourea on chronic hypoxia-induced pulmonary arterial remodelling and ventricular hypertrophy in rats. Clin Invest Med12:235-240, 1989.

    CAS  PubMed  Google Scholar 

  23. Le Cras TD and McMurtry IF. Nitric oxide production in the hypoxic lung. Am J Physiol Lung Cell Mol Physiol280: L575-582, 2001.

    PubMed  Google Scholar 

  24. Liu H, Colavitti R, Rovira, II, and Finkel T. Redox-dependent transcriptional regulation. Circ Res97:967-974, 2005.

    Google Scholar 

  25. Liu J, Ormsby A, Oja-Tebbe N, and Pagano PJ. Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circ Res95:587-594, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Liu JQ, Zelko IN, Erbynn EM, Sham JS, and Folz RJ. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol290: L2-10, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Mamo LB, Suliman HB, Giles BL, Auten RL, Piantadosi CA, and Nozik-Grayck E. Discordant extracellular superoxide dismutase expression and activity in neonatal hyperoxic lung. Am J Respir Crit Care Med170:313-318, 2004.

    Article  PubMed  Google Scholar 

  28. Marklund SL. Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest74:1398-1403, 1984.

    Article  CAS  PubMed  Google Scholar 

  29. Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, and Black SM. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol289: L288-289, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. McGrath JC, Deighan C, Briones AM, Shafaroudi MM, McBride M, Adler J, Arribas SM, Vila E, and Daly CJ. New aspects of vascular remodelling: the involvement of all vascular cell types. Exp Physiol90:469-475, 2005.

    Article  PubMed  Google Scholar 

  31. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science238:797-799, 1987.

    Article  CAS  PubMed  Google Scholar 

  32. Moudgil R, Michelakis ED, and Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol98:390-403, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Nozik-Grayck E, Dieterle CS, Piantadosi CA, Enghild JJ, and Oury TD. Secretion of extracellular superoxide dismutase in neonatal lungs. Am J Physiol Lung Cell Mol Physiol279: L977-984, 2000.

    CAS  PubMed  Google Scholar 

  34. Nozik-Grayck E, Huang YC, Carraway MS, and Piantadosi CA. Bicarbonatedependent superoxide release and pulmonary artery tone. Am J Physiol Heart Circ Physiol285: H2327-2335, 2003.

    Google Scholar 

  35. Nozik-Grayck E, Suliman HB, and Piantadosi CA. Extracellular superoxide dismutase. Int J Biochem Cell Biol, 2005.

    Google Scholar 

  36. Oury TD, Day BJ, and Crapo JD. Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic Biol Med20:957-965, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Oury TD, Day BJ, and Crapo JD. Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest75:617-636, 1996.

    CAS  PubMed  Google Scholar 

  38. Oury TD, Schaefer LM, Fattman CL, Choi A, Weck KE, and Watkins SC. Depletion of pulmonary EC-SOD after exposure to hyperoxia. Am J Physiol Lung Cell Mol Physiol283: L777-784, 2002.

    CAS  PubMed  Google Scholar 

  39. Pagano PJ. Vascular gp91(phox): beyond the endothelium. Circ Res87:1-3, 2000.

    CAS  PubMed  Google Scholar 

  40. Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, and Cohen RA. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol268: H2274-2280, 1995.

    Google Scholar 

  41. Patil S, Bunderson M, Wilham J, and Black SM. Important role for Rac1 in regulating reactive oxygen species generation and pulmonary arterial smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol287: L1314-1322, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Pawlinski R, Pedersen B, Kehrle B, Aird WC, Frank RD, Guha M, and Mackman N. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood101:3940-3947, 2003.

    Article  CAS  PubMed  Google Scholar 

  43. Piccoli C, D’Aprile A, Ripoli M, Scrima R, Lecce L, Boffoli D, Tabilio A, and Capitanio N. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem Biophys Res Commun353:965-972, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Rey FE and Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol22:1962-1971, 2002.

    Article  CAS  PubMed  Google Scholar 

  45. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, and Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res89:1111-1121, 2001.

    Article  CAS  PubMed  Google Scholar 

  46. Stenmark KR, Davie N, Frid MG, Gerasimovskaya EV, and Das M. Role of the adventitia in pulmonary vascular remodeling. Physiol Resin press, 2006.

    Google Scholar 

  47. Stenmark KR, Davie NJ, Reeves JT, and Frid MG. Hypoxia, leukocytes, and the pulmonary circulation. J Appl Physiol98:715-721, 2005.

    Article  PubMed  Google Scholar 

  48. Stenmark KR, Fagan KA, and Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res99:675-691, 2006.

    Article  CAS  PubMed  Google Scholar 

  49. Stralin P, Karlsson K, Johansson BO, and Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol15:2032-2036, 1995.

    CAS  PubMed  Google Scholar 

  50. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, and Hoidal JR. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen speciesdependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol290: L661-L673, 2006.

    Article  CAS  PubMed  Google Scholar 

  51. Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T, and et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell53:37-43, 1988.

    Article  CAS  PubMed  Google Scholar 

  52. Suliman HB, Ali M, and Piantadosi CA. Superoxide dismutase-3 promotes full expression of the EPO response to hypoxia. Blood104:43-50, 2004.

    Article  CAS  PubMed  Google Scholar 

  53. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, and Cohen RA. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res82:810-818, 1998.

    CAS  PubMed  Google Scholar 

  54. Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ, Schafer FQ, Flanagan SW, Weydert CJ, Spitz DR, Buettner GR, and Oberley LW. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene24:8154-8166, 2005.

    CAS  PubMed  Google Scholar 

  55. Ward JP. Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol101:993-995; discussion 999, 2006.

    Article  CAS  PubMed  Google Scholar 

  56. Weir EK and Archer SL. Counterpoint: Hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol101:995-998; discussion 998, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Weissmann N, Kuzkaya N, Fuchs B, Tiyerili V, Schafer RU, Schutte H, Ghofrani HA, Schermuly RT, Schudt C, Sydykov A, Egemnazarow B, Seeger W, and Grimminger F. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy. Respir Res6: 86, 2005.

    Google Scholar 

  58. Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M, Quanz K, Ghofrani HA, Schermuly RT, Fink L, Seeger W, and Grimminger F. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol34:505-513, 2006.

    Article  CAS  PubMed  Google Scholar 

  59. Wolin MS, Ahmad M, and Gupte SA. The sources of oxidative stress in the vessel wall. Kidney Int67:1659-1661, 2005.

    Article  CAS  PubMed  Google Scholar 

  60. Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ, and Stern DM. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med6:1355-1361, 2000.

    Article  CAS  PubMed  Google Scholar 

  61. Yan SF, Zou YS, Gao Y, Zhai C, Mackman N, Lee SL, Milbrandt J, Pinsky D, Kisiel W, and Stern D. Tissue factor transcription driven by Egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc Natl Acad Sci U S A95:8298-8303, 1998.

    Article  CAS  PubMed  Google Scholar 

  62. Zelko IN and Folz RJ. Extracellular superoxide dismutase functions as a major repressor of hypoxia-induced erythropoietin gene expression. Endocrinology146:332-340, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nozik-Grayck, E., Stenmark, K.R. (2007). Role of Reactive Oxygen Species in Chronic Hypoxia-Induced Pulmonary Hypertension and Vascular Remodeling. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_8

Download citation

Publish with us

Policies and ethics