SUPPLEMENTAL DATA

Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease

Patricia Schroeder,¹ Keertik Fulzele,¹ Sanjeev Forsyth, Maria D. Ribadeneira, Sylvie Guichard,

Erik Wilker, C. Gary Marshall, Adam Drake, Rose Fessler, Diamantis G. Konstantinidis, Katie

G. Seu, and Theodosia A. Kalfa

¹Co first authors

Journal of Pharmacology and Experimental Therapeutics

JPET-AR-2021-000743

Text S1. 2,3-DPG PK/PD modeling

NHP PK and 2,3-DPG data were modeled using a simultaneous PK/PD approach utilizing Phoenix[®] NLME software (Certara, Princeton, NJ). The PK data were fit using a twocompartment model with first-order absorption. The 2,3-DPG data were fit using a basic indirect-response model (Dayneka et al., 1993; Sharma and Jusko, 1998) with a stimulation of loss function for 2,3-DPG shown in equation 1, where 2,3DPG₀ is baseline 2,3-DPG levels, K_{out} is a first-order loss rate constant, S_{max} is the maximum ability of etavopivat to affect K_{out}, and SC₅₀ is the etavopivat concentration resulting in 50% of the maximum stimulation achieved at the effect site.

$$\frac{d2,3DPG}{dt} = 2,3DPG_0 \cdot K_{out} - K_{out} \cdot \left(1 + \frac{S_{max} \cdot C}{C + SC_{50}}\right) \cdot 2,3DPG$$

The maximum 2,3-DPG suppression (2,3DPG_{max}) was estimated from equation 2.

$$2,3DPG_{max} = \left(\frac{2,3DPG_0}{1+S_{max}}\right)$$

Half of the maximal 2,3-DPG response (2,3DPG₅₀) was estimated from equation 3

$$2,3DPG_{50} = 2,3DPG_0 - \frac{2,3DPG_0 - 2,3DPG_{max}}{2}$$

The plasma concentration resulting in half of the maximum decrease in 2,3-DPG (EC₅₀) was calculated using equation 4.

$$EC_{50} = \frac{SC_{50} \cdot (2,3DPG_0 - 2,3DPG_{50})}{2,3DPG_{50} \cdot (1 + S_{max}) - 2,3DPG_0}$$

Parameter	Value	S.D.
2,3DPG ₀ (µg/mL)	841	9.79
K_{out} (h ⁻¹)	0.100	0.019
S _{max}	0.870	0.159
SC50 (ng/mL)	33.5	12.9

Table S1. Etavopivat primary PK/PD parameters in non-human primates

2,3DPG₀, baseline 2,3-DPG levels; K_{out} , first-order loss rate constant; PD, pharmacodynamic; PK, pharmacokinetic; S_{max} , maximum ability of etavopivat to affect K_{out} ; SC₅₀, etavopivat concentration resulting in 50% of the maximum stimulation achieved at the effect site; S.D, standard deviation.

	Etavopivat mean (S.D.) PK parameters (oral dosing)				
Day 1		ay 1	Day 5		
	C _{max}	AUC ₀₋₂₄	C _{max}	AUC ₀₋₂₄	
Dose (mg/kg)	(ng/ml)	(h ∙ng/ml)	(ng/ml)	(h •ng/ml)	
3	94 (44)	608 (292)	83 (45)	295 (52)	
8	352 (95)	1116 (163)	725 (198)	1274 (86)	
22	424 (320)	1728 (658)	689 (200)	2568 (803)	
50	1823 (489)	8877 (1749)	ND	ND	

Table S2. Etavopivat exposure in non-human primates after single and repeated escalating doses

n = 4 animals per dose

 AUC_{0-24} , area under the concentration time curve from time 0–24 hours after dosing; C_{max} , maximum plasma concentration; ND, not determined; PK, pharmacokinetic; S.D, standard deviation.

	P ₅₀ Pre-dose	P ₅₀ 24 hours post-	Change in P ₅₀
	(mmHg)	dose (mmHg)	(mmHg)
Healthy subjects: single 700-mg dose	26.5 (1.53)	21.6 (2.05)	4.85 (0.68)
(n=6)			
	P ₅₀ - vehicle	P ₅₀ - etavopivat	Change in P ₅₀
	(DMSO) Treatment	Treatment	(mmHg)
	(mmHg)	(mmHg)	
Ex vivo SCD RBC (HbSC disease)	26.3 (1.24)	24.8 (1.58)	1.47 (0.63)
(n = 6)	261/100	24.0 (1.02)	
Ex vivo SCD RBC (HbSS disease) (<i>n</i> = 13)	26.1 (1.99)	24.8 (1.82)	1.27 (0.76)

Table S3. Change in P_{50} following etavopivat treatment in healthy subjects and ex vivo RBC from donors with SCD

Data are mean (S.D.)

DMSO, dimethyl sulfoxide; P₅₀, the partial pressure of dissolved oxygen at which Hb is 50% saturated with oxygen; RBC, red blood cell; SCD, sickle cell disease; S.D., standard deviation.