Title: The Andrographolide analogue 3A.1 synergizes with Taxane derivatives in aggressive metastatic prostate cancers by upregulation of Heat Shock proteins and downregulation of MAT2A-mediated cell migration and invasion

Taraswi Mitra Ghosh<sup>1</sup>, Teeratas Kansom<sup>1, 2</sup>, Suman Mazumder<sup>1,4</sup>, Joshua Davis<sup>1</sup>, Ahmed S. Alnaim<sup>1</sup>, Shanese L. Jasper<sup>1</sup>, Chu Zhang<sup>1</sup>, Aedan Bird<sup>1</sup>, Praneet Opanasopit<sup>2</sup>, Amit K Mitra<sup>1, 3,4</sup> and Robert D. Arnold<sup>1,3,\*</sup>

<sup>1</sup>Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.

<sup>2</sup>Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Thailand.

<sup>3</sup>University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, AL, USA.

<sup>4</sup>Center for Pharmacogenomics and Single-Cell Omics Initiative, Auburn University, Auburn, AL, USA

\*Corresponding Author: Robert D. Arnold, Ph.D.

Professor, Department of Drug Discovery & Development, Auburn University, Harrison School of Pharmacy Pharmaceutical Research Building 720 South Donahue Drive, Rm. 257 Auburn. AL 36849

Phone: (334) 844-8434

Email: rda0007@auburn.edu

# In vitro Docetaxel (DTX), Cabazitaxel (CBZ) and andrographolide analogue (3A.1) response in human aggressive prostate cell lines

- A) Bar graphs represent the dose reduction (Reduce Dose-RD, calculated by Dose Reduction Index) for all cell lines treated with the 3A.1+DTX and 3A.1+ CBZ in combination treatment at IC<sub>75</sub>.
- B) Bar graphs represent the dose reduction (Reduce Dose-RD, calculated by Dose Reduction Index) for all cell lines treated with the 3A.1+DTX and 3A.1+ CBZ in combination treatment at  $IC_{90}$ .
- C) Combination Index (CI) DTX, CBZ and 3A.1 observed at IC<sub>50</sub>, IC<sub>75</sub> and IC<sub>90</sub>. The CI value <1, =1, and >1 refer to synergistic, additive and antagonistic effect of the drugs treated in combination, respectively.

To evaluate the pharmacological interactions, percent (%) of cells were affected (fraction affected - Fa) by DTX or CBZ and 3A.1 treatment were analyzed by CompuSyn® version 1.0 software. Combination index (CI) value was calculated according to Chou's method (https://doi.org/10.1016/0065-2571(84)90007-4). (\* =  $p \le 0.05$ ).

## **Supplementary Figure 1.**

#### A.









CI=0.7\*

### В.





## C.













### Supplementary Figure 2. Differential gene expression profile

- A. Graphical summary of IPA analysis predicted various canonical pathways, causal network, upstream and downstream regulators (genes) for various treatment regimens 3A.1, DTX, DTX+3A.1, CBZ, CBZ+3A.1 in all cell lines (p<0.05)
- B. Venn diagrams illustrating unique and common DEGs (based on RNAseq gene expression analysis) among 3A.1, DTX , DTX+3A.1, CBZ, CBZ+3A.1 treatments in DU145 vs DUTXR cell lines (p<0.05).

## **Supplementary Figure 2.**

### Α.



# **Supplementary Figure 2.**

#### Α.



A.



В.



# Supplementary Figure 3. Functional analysis of the top DEG (MAT2A) using *in silico* approach (TCGA data)

Genes highly co-expressed (r>0.7) with MAT2A (TRA2B and SF1) are associated with patient survival PRAD patients.

## **Supplementary Figure 3.**



#### Supplementary Figure 4. Wound healing/Scratch (cell migration assay)

Cell migration after DTX, CBZ, 3A.1 single agent and in combination (RD, LW-IC50 and IC50 of both drugs) 48hr treatments were assessing by measuring Wound healing (Scratch) assay. Combination treatment exhibited reduce wound healing than single agent treatment mCRPC cell line (DUTXR).

## **Supplementary Figure 4.**



## **Supplementary Figure 4.**

0 Hr





48 Hr

24 Hr