A genomic DNA reporter screen identifies squalene synthase inhibitors which act cooperatively with statins to upregulate the low-density lipoprotein receptor

Alastair G. Kerr, Lawrence C.S. Tam, Ashley B. Hale, Milena Cioroch, Gillian Douglas, Sarina Agkatser, Olivia Hibbitt, Joseph Mason, James Holt-Martyn, Carole J. R. Bataille, Graham M. Wynne, Keith M. Channon, Angela J. Russell, and Richard Wade-Martins

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; (AK., LT., MC., SA., OH., JH-M., RW-M)

Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK (AH., GD., KM)

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, UK (JM., CB., GW., AR)

Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK (AR)

Supplementary Information

Supplementary Figure 1. Compounds OX03371 does not stabilise or interact with o-Luciferin or luciferase nor fluoresce itself and demonstrates a favourable toxicity profile.
(A) Hep3B cells were transfected with a $\mathrm{p} C M V$-Luc plasmid 24 hours prior to compound treatment of OX03371 or vehicle control. An untransfected well was left to control for transfection. 48 hours after compound treatment luciferase expression was analysed with no differences detected between vehicle and compound treated cells. (B)
Untransfected Hep3B cells were treated with either compound OX03371 or vehicle control. 48 hours after compound treatment no significant differences could be detected
between any group. Luciferase expression was normalised to total protein. $\mathrm{n}=2$. Error bars denote SD. (C) CHO-pLDLR-Luc cells were treated with compound OX03371 for 48 hours before Adenylate kinase release into the media was measured to quantify the cytotoxicity profile. $\mathrm{n}=4$. Error bars denote standard deviation (SD).

Supplementary Figure 2. Compound OX03371 has a half-life of under five minutes when spiked into mouse liver microsomes.

Representative LC/MS trace of compound OX03371 (black arrow) and the detection of a potential metabolite (red arrow), (A) 0 and (B) 5 minutes after being spiked into mouse liver microsomes.

Supplementary Figure 3. OX03394 a compound with no activity is predicted to sit in a different conformation in the active site of squalene synthase compared with compounds which are shown to inhibit this enzyme.

In silico modelling of OX03394 using MOE software.

General procedures:

All reactions involving organometallic or other moisture-sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was oven dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs et al. ${ }^{1}$ Water was purified by an Elix ${ }^{\circledR}$ UV10 system. All other reagents were used as supplied (analytical or HPLC grade) without prior purification. Thin layer chromatography was performed on aluminium plates coated with $60 \mathrm{~F}_{254}$ silica. Plates were visualised using UV light (254 nm), or 1% aq KMnO_{4}. Flash column chromatography was performed on Kieselgel 60 silica. Melting points were recorded on a Gallenkamp Hot Stage apparatus and are uncorrected. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer with a diamond ATR module. Selected characteristic peaks are reported in cm^{-1}. NMR spectra were recorded on Bruker Avance spectrometers at rt in a solution of deuterated acetone unless stated otherwise. The field was locked by external referencing to the relevant deuteron resonance. Chemical shifts (d) are reported in ppm and coupling constants J in Hz . Low resolution mass spectra were recorded on either a VG MassLab 20-250 or a Micromass Platform 1 spectrometer. Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyalanine, or a Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column ($15 \mathrm{~m} \otimes 0.25 \mathrm{~mm}$) using amyl acetate as a lock mass.

General Procedure 1 - Preparation of Stilbenes by Horner-Wadsworth-Emmons (HWE) Reaction
n-BuLi (2.5 M in hexanes, 1.5 eq.) was added to a solution of diethyl benzylphosphonate (1.5 eq.) in toluene (2 mL) at $0^{\circ} \mathrm{C}$, and stirred for 30 min . A solution of the requisite aldehyde (1 eq.) in toluene (1 mL) was then added dropwise to the reaction, which was then stirred for 16 h . The reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq., 20 mL) and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic phase was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to yield the crude product. Purification by column chromatography on silica gel afforded the desired product.

General Procedure 2 - Alkylation of Hydroxides
$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq.) was added to a solution of the requisite alcohol (1 eq.) in DMF (1 mL) in a microwave vial. The resulting suspension was heated at $90^{\circ} \mathrm{C}$ for 30 min before addition of a solution of the alkyl chloride (1.1 eq.) in DMF (1 mL). The microwave vial was sealed and heated at $90^{\circ} \mathrm{C}$ for 16 h . After cooling, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, the organic layer washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to yield the crude product.
Purification by column chromatography afforded the desired product.

General Procedure 3 - Preparation of Stilbenes by Heck Coupling using Pd(OAc) ${ }_{2}$
lodoarene (1 eq.), requisite styrene (1.2 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 eq .), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.03 eq.) and $\mathrm{PPh}_{3}(0.06$ eq.) were dissolved in degassed 1,4 -dioxane (2 mL) in a sealed microwave vial, and heated to $100^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was allowed to cool, then quenched $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$; the organic phase was washed with water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to yield the crude product.
Purification by column chromatography afforded the desired product.

General Procedure 4 - Preparation of Stilbenes by Heck Coupling using Pd($\left.\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$

Haloarene (1 eq.), requisite styrene (1.5 eq.), $n-\mathrm{Bu}_{3} \mathrm{~N}(2 \mathrm{eq}),. \mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(0.015$ eq.) and tetrabutylammonium bromide (1 eq.) were dissolved in $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ in a sealed microwave vial, and heated to $140{ }^{\circ} \mathrm{C}$ for 24 h . After cooling, the reaction mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield the crude product. Purification by column chromatography afforded the desired product.

Experimental data:

(E)-N,N-Dimethyl-3-(4-styrylphenoxy)propan-1-amine OX03371

n-BuLi (2.5M in hexanes, $0.57 \mathrm{~mL}, 1.42 \mathrm{mmol})$ was added to a stirred solution of diethyl benzylphosphonate ($0.3 \mathrm{~mL}, 1.42 \mathrm{mmol}$) in THF (2 mL) at $0{ }^{\circ} \mathrm{C}$, and stirred for 30 min . A solution of the aldehyde $17 \mathrm{a}(0.24 \mathrm{~mL}, 1.21 \mathrm{mmol})$ in THF was then added dropwise to the reaction, which was then stirred for 16 h . The reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol. 20 mL) and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield the crude product. Purification by recrystallisation in Pet Ether (40$60^{\circ} \mathrm{C}$) afforded the title compound as a white solid ($22 \mathrm{mg}, 7 \%$). $\mathrm{mp} 75-77^{\circ} \mathrm{C}$; Umax $\left(\mathrm{cm}^{-1}\right)$ 2940, 2774, 1687, 1602, 1510, 1246, 1178, 1055; ठн (400 MHz, acetone-d ${ }_{6}$) $7.56(2 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}$, apparent ddd J8.7, 2.9, 2.1) $7.36(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{m})$, $7.18(1 \mathrm{H}, \mathrm{d}, J 16.3), 7.08(1 \mathrm{H}, \mathrm{d}, J 16.3), 6.94(2 \mathrm{H}$, apparent ddd J8.7, 2.9, 2.1), 4.05 (2H, t J 6.5), $2.40(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0)$, $2.18(6 \mathrm{H}, \mathrm{s}), 1.90(2 \mathrm{H}, \mathrm{m})$; ठc (100 MHz , acetone- d_{6}) 160.0, 138.8, 130.9, 129.5, 129.2, 128.7, 128.0, 127.1, 126.1, 115.6, 66.9, 56.9, 45.8, 28.3; $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}{ }^{+}\right) 282\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ requires 282.1852, found 282.1855.

(E)-N,N-Dimethyl-3-(3-styrylphenoxy)propan-1-amine OX03372

Following general procedure 1, the requisite aldehyde ($197 \mathrm{mg}, 0.948 \mathrm{mmol}$) gave the title compound as a viscous oil. ($51 \mathrm{mg}, 19 \%$). $U_{\max }\left(\mathrm{cm}^{-1}\right) 3376,2945,1599$, $1579,1449,1272,1157$; δ н ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.52 (2H, d J 7.9), $7.37(2 \mathrm{H}, \mathrm{m})$, 7.27 (2H, m), 7.09
(4H, m), $6.82(1 \mathrm{H}, \mathrm{dd}, J 8.1,2.5), 4.08(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3), 2.58(2 \mathrm{H}, \mathrm{t}, J 7.5), 2.35(6 \mathrm{H}$, s), $2.05(2 \mathrm{H}, \mathrm{m})$; $\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 159.2,138.7,137.2,129.6,128.9,128.7$, 128.5, 127.6, 126.5, 119.3, 113.8, 112.2, 66.0, 56.4, 45.2, 27.2; m/z (ESI+) 282 $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS $\left(\mathrm{ESI}{ }^{+}\right) \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 282.1852, found 282.1860.
(E)-1-((4-Methylpentyl)oxy)-4-styrylbenzene OX03373

Alcohol OX03395 (100 mg, 0.510 mmol , 1 eq.) was dissolved in DMF (1 mL) in a microwave vial with $\mathrm{K}_{2} \mathrm{CO}_{3}\left(211 \mathrm{mg}, 1.53 \mathrm{mmol}\right.$, 3 eq.) and stirred at $90{ }^{\circ} \mathrm{C}$ for 30 min . The tosylate ($144 \mathrm{mg}, 0.561 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added, and the reaction was stirred at $90{ }^{\circ} \mathrm{C}$ for a further 16 h . After cooling, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organics were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and concentrated in vacuo to yield the crude product. Purification by column chromatography ($0.3 \%-4 \%$ EtOAc in Pet Ether) yielded the title compound as a white solid ($114 \mathrm{mg}, 80 \%$). mp 97-98 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right)$ 2955, 1603, 1510, 1241, 1175, 967; ठн (600 MHz) 7.98
(2H, d, J 8.0) 7.96 (2H, d, J 7.6), 7.78 (3H, dd, J 7.4, 6.9), 7.66 (1H, dd, J 8.0, 6.9), 7.62 (1H, d, J 16.4), 7.54 (1H, d, J 16.4) 7.37 (2H, d, J 7.4), 4.43 (2H, t J6.6), 2.48 ($1 \mathrm{H}, \mathrm{br}$ s), $2.21(2 \mathrm{H}, \mathrm{m}) 1.79(2 \mathrm{H}, \mathrm{m}), 1.36(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3)$; ठc (125 MHz) 160.0, 138.8, 130.9, 129.6, 129.2, 128.7, 128.0, 127.1, 127.1, 115.6, 69.0, 36.0, 28.6, 28.0, 23.0; HRMS (FI) C20 $\mathrm{H}_{24} \mathrm{O}(\mathrm{M})$ requires 280.1827, found 280.1829.

(E)-1-(3-Methoxypropoxy)-4-styrylbenzene OX3374

Alcohol OX03395 ($44 \mathrm{mg}, 0.173 \mathrm{mmol}, 1$ eq.) in THF (0.5 mL) was added to a solution of $\mathrm{NaH}(140 \mathrm{mg}, 3.46 \mathrm{mmol}, 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, 20 eq .) in THF (0.5 mL), and stirred for 1 h at RT. Iodomethane ($0.05 \mathrm{~mL}, 0.865 \mathrm{mmol}, 5 \mathrm{eq}$.) was added, and the reaction was allowed to continue stirring for a further 16 h . The reaction mixture was then concentrated in vacuo to give the crude product; purification by flash chromatography yielded the title compound as a white solid (22 $\mathrm{mg}, 45 \%$). mp $77.8-81.0^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2861,1604,1510,1123$; ठн $^{(400 \mathrm{MHz})} 7.56$ ($2 \mathrm{H}, \mathrm{d} J 7.9, \mathrm{H} 4, \mathrm{H} 5$), 7.53 (2H, apparent ddd J 8.7, 2.9, 2.1), 7.35 (2 H , apparent dd J7.8, 7.5), 7.22 (2H, m), 7.09 ($1 \mathrm{H}, \mathrm{d} J 16.5$),
$6.94(2 \mathrm{H}$, apparent ddd J 8.7, 2.9, 2.1), 4.08 (2H, t J 6.3), 3.53 (2H, t J 6.3), 3.29 (3H, s),
$2.00\left(2 \mathrm{H}\right.$, observed quintet, J6.3); $\delta_{c}(100 \mathrm{MHz}) 159.9,138.8,131.0,129.6,129.1$, 128.7, 128.0, 127.2, 127.1, 115.6, 69.9, 65.7, 58.7, 30.4; HRMS (FI) $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ (M) requires 268.1463, found 268.1460.

(E)-3-(4-(4-Methoxystyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03375

Following general procedure 2, the requisite stilbene ($50 \mathrm{mg}, 0.221 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($38 \mathrm{mg}, 0.243 \mathrm{mmol}$) gave the title
compound as a white solid ($24 \mathrm{mg}, 35 \%$). mp 138-140 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2954,1605$, 1512, 1247, 1176, 1030; $\delta_{H}(400 \mathrm{MHz}) 7.49(4 \mathrm{H}, \mathrm{m}), 7.04(2 \mathrm{H}, \mathrm{s}), 6.92(4 \mathrm{H}, \mathrm{m})$, 4.05 (2H, t J
$6.4), 3.81(3 \mathrm{H}, \mathrm{s}), 2.40(2 \mathrm{H}, \mathrm{t} J 7.0), 2.18(6 \mathrm{H}, \mathrm{s}), 1.91(2 \mathrm{H}, \mathrm{m})$; $\mathrm{\delta c}_{\mathrm{c}}(100 \mathrm{MHz}) 160.2$, 159.7, 131.5, 131.4, 128.4, 128.4, 127.0, 126.9, 115.6, 115.0, 66.9, 56.9, 55.6, 45.8, 28.4; m/z (ESI+) $312\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 312.1958, found 312.1965.

(E)-3-(4-(3-Methoxystyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03376

Following general procedure 2, the requisite alcohol ($100 \mathrm{mg}, 0.441 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($76 \mathrm{mg}, 0.485 \mathrm{mmol}$) gave the title compound as a brown solid ($71 \mathrm{mg}, 52 \%$). mp $28-32{ }^{\circ} \mathrm{C}$; $u_{\max }\left(\mathrm{cm}^{-1}\right) 2944,2762$, 1598, 1510, 1254, 1154, 1042; ठн (400 MHz) 7.51 (2H, apparent ddd J 8.8, 2.8, 1.9), 7.26 ($1 \mathrm{H}, \mathrm{m}$), 7.20 ($1 \mathrm{H}, \mathrm{d}$ J 16.3), 7.14 (2H, m,), 7.06 ($1 \mathrm{H}, \mathrm{d}$ J 16.3), 6.93 (2H, apparent ddd $J 8.8$,
2.8, 1.9), $6.82(1 \mathrm{H}, \mathrm{m}), 4.04(2 \mathrm{H}, \mathrm{t}$ J 6.4), $3.82(3 \mathrm{H}, \mathrm{s}), 2.39(2 \mathrm{H}, \mathrm{t} J 7.0), 2.17$ (6 H , s), $1.90(2 \mathrm{H}, \mathrm{m}) ; \delta \mathrm{c}(100 \mathrm{MHz}) 161.1,160.0,140.2,130.8,130.5,129.4,128.7$, 127.1, 119.7,
115.6, 113.8, 112.3, 66.9, 56.8, 55.5, 45.8, 28.3; m/z (ESI+) $312\left([\mathrm{M}+\mathrm{H}]^{+}\right) ;$HRMS $\left(E I^{+}\right) \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 312.1958, found 312.1957.

(E)-3-(4-(2-Methoxystyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03377

Following general procedure 2, the requisite alcohol ($71 \mathrm{mg}, 0.313 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($54 \mathrm{mg}, 0.344 \mathrm{mmol}$) gave the title compound as a white solid ($52 \mathrm{mg}, 53 \%$). mp 177.6-180.9 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2418$ (w), 1604 (w), 1509 (m), 1240 (s), 1173 (s); $\delta н(400 \mathrm{MHz}) 7.63$ (1 H , dd J7.7, 1.6), $7.51(2 \mathrm{H}$, apparent ddd J 8.8, 2.8, 2.0), 7.37 ($1 \mathrm{H}, \mathrm{d} J 16.6$), $7.23(1 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}$, d J 16.6), $6.97(4 \mathrm{H}, \mathrm{m}), 4.18(2 \mathrm{H}, \mathrm{t} J 6.1), 3.89(3 \mathrm{H}, \mathrm{s}), 3.27(2 \mathrm{H}, \mathrm{m}), 2.80(6 \mathrm{H}, \mathrm{s})$, $2.36(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}}(125 \mathrm{MHz}) 159.4,157.9$, 130.0, 129.3, 129.3, 128.6, 127.4, 126.9, 122.2, 121.6, 115.7, 112.1, 66.3, 56.0, 55.4, 42.7, 25.3; m/z (ESI+) 312 ([M+H] ${ }^{+}$); HRMS (ESI ${ }^{+}$) $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 312.1958, found 312.1959;

(E)-N,N-Dimethyl-3-(4-(2-(naphthalen-2-yl)vinyl)phenoxy)propan-1-amine OX03378

Following general procedure 2, the requisite alcohol ($200 \mathrm{mg}, 0.812 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($141 \mathrm{mg}, 0.893 \mathrm{mmol}$) gave the title compound as a beige solid ($209 \mathrm{mg}, 78 \%$). mp 138.3-139.7 ${ }^{\circ} \mathrm{C}$; $u_{\max }\left(\mathrm{cm}^{-1}\right)$ 2937, $2774,1600,1509,1250$; ठн (500 MHz , DMSO-d6) 7.95 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 10$), 7.86 ($4 \mathrm{H}, \mathrm{m}$), $7.58(2 \mathrm{H}$, apparent ddd J8.7, 3.0, 2.0), $7.48(2 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d} J 16.4), 7.25(1 \mathrm{H}$, d J 16.4), 6.96 (2H, apparent ddd J 8.7, 3.0, 2.0), 4.01 (2H, t J 6.4), 2.35 (2H, t J 7.0), $2.14(6 \mathrm{H}, \mathrm{s}), 1.85(2 \mathrm{H}, \mathrm{m})$; ठc (125 MHz, DMSO-d6) 158.5, 135.0, 133.4, 132.4, 129.6, 128.7, 128.1, 127.9, 127.7, 127.6, 126.4, 126.0, 125.8, 125.8, 123.5, 114.7, 65.8, 55.7, 45.2, 26.9; m/z (ESI+) $332\left([\mathrm{M}+\mathrm{H}]^{+}\right) ;$HRMS (ESI $\left.{ }^{+}\right) \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 332.20089, found 332.19998.

(E)-3-(4-(4-Fluorostyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03379

Following general procedure 2, the requisite alcohol ($199 \mathrm{mg}, 0.929 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($161 \mathrm{mg}, 1.02 \mathrm{mmol}$) gave the title compound as a white solid ($232 \mathrm{mg}, 83 \%$); mp 128.8-129.9 ${ }^{\circ} \mathrm{C}$; $u_{\max }\left(\mathrm{cm}^{-1}\right) 2951$, 2767, 1510, 1247, 831; ठн (400 MHz , DMSO-d6) 7.60 ($2 \mathrm{H}, \mathrm{m}$), 7.51 ($2 \mathrm{H}, \mathrm{d}$ J 8.6), 7.17 (3H, m,

H8), 7.08 (1H, d J 16.5), 6.93 (2H, d J 8.6), 4.00 (2H, t J 6.4), 2.43 (2H, t J 7.2), 2.20
(6H, s), 1.87 (2H, m); סc (125 MHz, DMSO-d6 $) 161.4$ (d J 244.0), 158.3, 134.0 (d J 2.8),
129.5, 128.0, 127.9, 127.7, 124.9, 115.5 (d J 21.3), 114.7, 65.7, 55.5, 44.9, 26.6; m/z
$\left(\mathrm{ESI}^{+}\right) 300\left(\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; HRMS $\left(\mathrm{ESI}{ }^{+}\right) \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 300.1758, found 300.1750;
(E)-3-(4-(3-Fluorostyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03380

$\mathrm{Pd}(\mathrm{OAc})_{2}$ ($4 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.05 \mathrm{eq}$.) and PPh_{3} ($13 \mathrm{mg}, 0.051 \mathrm{mmol}, 0.15$ eq.) were added to a sealed microwave vial in DMF (1 mL), and the resulting solution was flushed with nitrogen. The resulting orange solution was then heated with stirring at $110^{\circ} \mathrm{C}$ for 10 min . A solution of the requisite styrene $(55 \mathrm{mg}, 0.434 \mathrm{mmol}$, 1.3 eq.), 4 -iodophenol ($73 \mathrm{mg}, 0.334 \mathrm{mmol}, 1$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(185 \mathrm{mg}, 1.34 \mathrm{mmol}$, 4 eq.) in DMF (0.5 mL) was then added, and the reaction mixture heated at $110^{\circ} \mathrm{C}$ for a further 2 h . The reaction mixture was allowed to cool, then extracted with EtOAc. The combined organic layers were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and reduced in vacuo to give a solid (49 mg). This was redissolved in DMF (1 mL), treated with $\mathrm{K}_{2} \mathrm{CO}_{3}\left(94 \mathrm{mg}, 0.681 \mathrm{mmol}, 3\right.$ eq.) and heated at $90^{\circ} \mathrm{C}$ for 30 min before addition of a solution of 3-dimethylamino-1 propylchloride hydrochloride ($40 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.1 \mathrm{eq}$.) neutralised previously with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF (0.5 mL). The microwave vial was sealed and heated at $90^{\circ} \mathrm{C}$ for 16 h .
After cooling, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), the organic layer washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to yield the crude product. Purification by column chromatography ($16 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the desired product as a white solid ($68 \mathrm{mg}, 68 \%$). mp 56.2-58. $6^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right)$ 2813, 1600, 1510, 1253, 1177; $\mathrm{\delta}_{\mathrm{H}}$ $(400 \mathrm{MHz}) 7.55(2 \mathrm{H}$, apparent ddd J8.7, 2.9, 2.0), $7.36(3 \mathrm{H}, \mathrm{m}), 7.27$ ($1 \mathrm{H}, \mathrm{d} \mathrm{J} 16.5$), $7.11(1 \mathrm{H}, \mathrm{d} J 16.5), 6.98(3 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}, \mathrm{t} J 6.4), 2.52(2 \mathrm{H}, \mathrm{t} J 7.2), 2.25(6 \mathrm{H}, \mathrm{s})$, 1.98 (2H, m); סc (100 MHz) 164.2 (d J 243.0), 160.3, 141.6 (d J 7.3), 131.3 (d J 8.8), 130.8, 130.6, 129.0, 125.9 (d J
2.9), 123.4 (d J 2.9), 115.6, 114.5 (d J 21.3), 113.1 ($d, J 22.0$), 66.8, 56.7, 45.4, 28.9; m/z (ESI+) $300\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI+) $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOF}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 300.1758, found 300.1754.

(E)-N,N-Dimethyl-3-(4-(4-nitrostyryl)phenoxy)propan-1-amine OX03381

Following general procedure 2, the alcohol ($92 \mathrm{mg}, 0.381 \mathrm{mmol}$) and 3-dimethylamino1-propylchloride hydrochloride ($66 \mathrm{mg}, 0.419 \mathrm{mmol}$) gave the title compound as an orange solid ($93 \mathrm{mg}, 75 \%$). mp $85.2-85.9^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right)$ 2937, $1589,1502,1332,1174 ; \delta_{H}(400 \mathrm{MHz}) 8.21$ (2H, d J 8.7), 7.81 (2H, d J 8.7), 7.61 (2H, d J 8.6), 7.46 (1H, d J 16.4), 7.24 (1H, d J 16.4), 6.97 (2H, apparent ddd J8.6, 3.1, 2.3), 4.08 (2H, t J 6.4), 2.46
(2H, t J 7.1), 2.22 (6H, s), 1.94 (2H, m); סc (100 MHz) 160.8, 147.3, 145.7, 134.0, 130.1,
129.5, 127.7, 124.9, 124.9, 115.7, 66.9, 56.7, 45.6, 28.1; m/z (ESI+) $327\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}\right.$; HRMS (ESI+) $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 327.17032, found 327.16962.

(E)-N,N-Dimethyl-3-(4-(2-nitrostyryl)phenoxy)propan-1-amine OX03397

Following general procedure 2, the requisite alcohol (81 mg) and 3-dimethylamino1 propylchloride hydrochloride (58 mg) gave the title compound as an orange solid ($48 \mathrm{mg}, 44 \%$). mp 51.9-57.1 ${ }^{\circ} \mathrm{C}$; $u_{\max }\left(\mathrm{cm}^{-1}\right)$ 2942, 1599, 1512, 1342, 1250; סн (400 MHz) 7.94
(2H, m), 7.69 (1H, apparent dd J 8.0, 7.3), 7.56 (2H, apparent ddd J 8.8, 2.9, 2.0), 7.49 (1H, m), 7.41 (1H, d J16.2), 7.27 (1H, d J16.2), 6.97 (2H, apparent ddd J8.8, 2.9, 2.0),
4.08 (2H, t J6.4), 2.51 (2H, t J7.1), 2.25 ($6 \mathrm{H}, \mathrm{s}$), 1.96 (2H, m); סc (100 MHz) 160.7, 149.2, 134.3, 134.0, 133.5, 130.2, 129.4, 128.8, 128.6, 125.4, 121.3, 115.7, 66.9, 56.6,
45.4, 27.9; m/z (ESI+) $327\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI+) $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 327.17032, found 327.16966.

N,N-Dimethyl-3-(4-(phenylethynyl)phenoxy)propan-1-amine OX03383

Following general procedure 2, the requisite alcohol ($100 \mathrm{mg}, 0.515 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($89 \mathrm{mg}, 0.561 \mathrm{mmol}$) gave the title compound as a beige solid ($104 \mathrm{mg}, 73 \%$). mp $51-52^{\circ} \mathrm{C} u_{\max }\left(\mathrm{cm}^{-1}\right) 2938,2214$, 1510, 1249; бн ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 7.47 (2H, m), 7.42 (2H, apparent ddd J8.8, 2.8, 2.0), 7.33 (3H, m), 6.90 (2H, apparent ddd J 8.8, 2.8, 2.0), 3.99 (2H, t J 6.2), 2.60 (2H, t J 7.9), 2.34
(6H, s), 1.97 (2H, m); бc (100 MHz, CD ${ }_{3} \mathrm{OD}$) 160.6, 134.2, 132.5, 129.7, 129.2, 125.1,
116.8, 115.8, 90.4, 89.0, 67.1, 57.3, 45.3, 27.9; m/z (ESI+) $280\left([\mathrm{M}+\mathrm{H}]^{+}\right) ;$HRMS $\left(\mathrm{ESI}{ }^{+}\right) \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 280.1694, found 280.1696 .
N, N-Dimethyl-3-(4-phenethylphenoxy)propan-1-amine OX03384

Stilbene OX03371 ($50 \mathrm{mg}, 0.178 \mathrm{mmol}$) was suspended in MeOH (4 mL) with 10% $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ and stirred under 1 atm hydrogen for 3 h . Upon completion, the suspension was filtered over a celite pad, and the filtrate concentrated in vacuo to give the desired product as a clear oil ($28 \mathrm{mg}, 56 \%$). $u_{\max }\left(\mathrm{cm}_{-1}\right)$ 2939, 2361, 1511, 1242,$1156 ; \delta_{H}(400 \mathrm{MHz}) 7.26(2 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}, \mathrm{m}), 7.11(2 \mathrm{H}$, apparent ddd J8.6, 3.0, 2.1), 6.82
(2H, apparent ddd J 8.6, 3.0, 2.1), 3.99 (2H, t J 6.4), $2.86(4 \mathrm{H}, \mathrm{m}), 2.39(2 \mathrm{H}, \mathrm{t} J$ 7.0), 2.16
($6 \mathrm{H}, \mathrm{s}$), $1.88(2 \mathrm{H}, \mathrm{m})$; ठc (100 MHz) 158.5, 142.9, 134.5, 130.2, 129.4, 129.1, 126.7, 115.2, 66.7, 56.9, 45.8, 39.0, 37.8, 28.4; (ESI+) 284 ([M+H]+); HRMS (ESI ${ }^{+}$ $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 284.2009 found 284.2017.
N, N-Ddimethyl-3-(4-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)phenoxy)propan-1-amine OX03385

Following general procedure 2, the requisite alcohol ($67 \mathrm{mg}, 0.301 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($52 \mathrm{mg}, 0.331 \mathrm{mmol}$) gave the title compound as a white solid ($51 \mathrm{mg}, 55 \%$). mp not obtained due to decomposition at $250{ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 3015$ (w), 1943 (w), 1600 (m), 1509 (m), 1241 (s); $\delta_{H}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$)
$7.44(2 \mathrm{H}, \mathrm{d} J 7.8), 7.38(2 \mathrm{H}, \mathrm{d} J 8.8), 7.34(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{dd} J$ 15.1,
10.6), $6.86(3 \mathrm{H}, \mathrm{m}), 6.63(2 \mathrm{H}, \mathrm{d} J 15.1) 4.04(2 \mathrm{H}, \mathrm{t} J 6.4), 2.50(2 \mathrm{H}, \mathrm{t} J 7.3), 2.29$ (6H, s),
$1.99(2 \mathrm{H}, \mathrm{m})$; $\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.7,137.5,132.5,131.6,130.1,129.5,128.6$, 127.6, 127.3, 127.1, 126.2, 114.7, 66.2, 56.3, 45.4, 27.4; m/z (ESI+) $308\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 308.2009, found 308.2004.

N-(4-(3-(Dimethylamino)propoxy)phenyl)benzamide OX03386

Following general procedure 2, the requisite alcohol (56 mg) and 3-dimethylamino1 propylchloride hydrochloride (46 mg) gave the title compound as a beige solid (26 $\mathrm{mg}, 33 \%)$. mp 145.5-146.8 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 3274,2765,1642,1509,1232 ;$ ठ $^{(400}$ $\mathrm{MHz}) 9.42(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.99(2 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}$, apparent ddd J 9.1, 3.4, 2.3), 7.56 $(1 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{m}), 6.92(2 \mathrm{H}$, apparent ddd J 9.1, 3.4, 2.3), 4.04 (2H, t J 6.4), $2.43(2 \mathrm{H}, \mathrm{t} J 7.1), 2.20(6 \mathrm{H}$,
s), $1.91(2 \mathrm{H}, \mathrm{m})$; $\mathrm{\delta c}_{\mathrm{c}}(100 \mathrm{MHz}) 165.9,156.6,136.5,133.5,132.2,129.3,128.3$, 122.6, 115.3, 67.0, 56.9, 45.7, 28.3; m/z (ESI+) 299 ([M+H] ${ }^{+}$); HRMS (ESI ${ }^{+}$ $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 299.17540, found 299.17514 .

(E)-3-(2-Fluoro-4-styrylphenoxy)-N,N-dimethylpropan-1-amine OX03387

Following general procedure 2, the requisite alcohol ($53 \mathrm{mg}, 0.247 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($43 \mathrm{mg}, 0.272 \mathrm{mmol}$) gave the title compound as a cream solid ($31 \mathrm{mg}, 42 \%$). mp 68.2-72.6 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2940$ (w), 2816 (m), 2766 (m), 1513 (s), 1273 (s), 1017 (s); סн (400 MHz) 7.57 (2H, d J 7.9) 7.44 (1 H , dd J 12.9, 2.1), 7.36 (2H, apparent dd J7.9, 7.5), 7.31 ($1 \mathrm{H}, \mathrm{d}$ J 8.5), 7.23 (1H, m), $7.15(3 \mathrm{H}, \mathrm{m}), 4.14(2 \mathrm{H}, \mathrm{t} J 6.4), 2.41(2 \mathrm{H}, \mathrm{t} J 6.9), 2.17(6 \mathrm{H}, \mathrm{s}), 1.93(2 \mathrm{H}$, m); ठс (125 MHz) 153.6 (d J 244.0), 147.7 (d J 11.1), 138.4, 131.9 (d J 6.5), 129.6, 128.7, 128.4, 128.2 (d J 2.8),
127.3, 124.2 (d, J 2.8), 115.8, 114.1 (d J 19.4), 68.2, 56.7, 45.8, 28.3; m/z (ESI ${ }^{+}$) $300\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS $\left(\mathrm{ESI}{ }^{+}\right) \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOF}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 300.1758, found 300.1753.

(E)-N,N-Dimethyl-2-(4-styrylphenoxy)ethanamine OX03388

Following general procedure 2, alcohol OX03395 (200 mg, 1.02 mmol) and 2chloro N, N-dimethylethanamine ($162 \mathrm{mg}, 1.12 \mathrm{mmol}$) gave the title compound as a white solid ($61 \mathrm{mg}, 22 \%$). mp 102-106 ${ }^{\circ} \mathrm{C}$; $u_{\max }\left(\mathrm{cm}^{-1}\right) 2938,2759,1603,1509$,
 (2H, m), 7.10 ($1 \mathrm{H}, \mathrm{d}$ J 16.3), 6.95 (2H, apparent ddd J 8.8, 2.9, 2.0), 4.10 (2H, t J 5.9), $2.68(2 \mathrm{H}, \mathrm{t} \mathrm{J} 6.0), 2.27(6 \mathrm{H}, \mathrm{s})$; $\delta \mathrm{c}(100 \mathrm{MHz}) 159.8,138.8,131.1,129.6$, 129.1, 128.7, 128.0, 127.2, 127.1, 115.6, 67.3, 59.0, 46.2; m/z (ESI+) 268 ([M+H]+); HRMS (ESI $\left.{ }^{+}\right) \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 268.1696, found 268.1701.

(E)-N-Methyl-3-(4-styrylphenoxy)propan-1-amine OX03389

Stilbene OX03371 (40 mg, 0.142 mmol , 1 eq) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ to give a 0.2 M solution, and was added to 1 -chloroethyl chloroformate (0.05 mL ,
$0.426 \mathrm{mmol}, 3 \mathrm{eq}$) in a sealed microwave vial, to be heated to reflux for 16 h . After cooling, the reaction mixture was concentrated in vacuo. The residue was then redissolved in MeOH (1.5 mL), transferred so a sealed microwave vial, and refluxed for a further 2 h . The reaction mixture was left to cool, and concentrated in vacuo to yield the crude product. Purification by column chromatography ($18 \% \mathrm{MeOH}$, 0.5% TEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the title compound as a cream solid ($20 \mathrm{mg}, 52 \%$). $\mathrm{mp} 84.2-87.7^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2925,1623,1510,1384,1305 ;$ бн ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $7.48(4 \mathrm{H}, \mathrm{m}), 7.32(2 \mathrm{H}$, apparent dd $J 7.8,7.5)$,
$7.21(1 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{d} J 16.5), 7.00(1 \mathrm{H}, \mathrm{d} J 16.5), 6.91(2 \mathrm{H}$, apparent ddd J8.8, 2.9, 1.9), 4.04 (2H, t J 6.2), 2.78 (2H, t J 7.2), $2.42(3 \mathrm{H}, \mathrm{s}), 1.99(2 \mathrm{H}, \mathrm{m}), 1.27(1 \mathrm{H}$, broad s); $\delta c\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) 160.2, 131.8, 129.8, 129.8, 129.4, 128.9, 128.3, 127.7, 127.4, 115.9, 67.3, 49.7, 36.0, 29.9; m/z (ESI+) 268 ([M+H]+); HRMS (ESI+) $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 268.1696, found 268.1693

N, N-Dimethyl-3-(4-(quinolin-3-yl)phenoxy)propan-1-amine OX03390

Following general procedure 2, the requisite alcohol ($74 \mathrm{mg}, 0.334 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($58 \mathrm{mg}, 0.367 \mathrm{mmol}$) gave the title compound as a white solid ($47 \mathrm{mg}, 46 \%$). mp 54.6-57.2 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2926,2763$, 1606, 1516, 1252, 1181; $\delta_{H}(500 \mathrm{MHz}) 9.20(1 \mathrm{H}, \mathrm{d}$ J 2.2), 8.46 ($1 \mathrm{H}, \mathrm{d}$ J 2.2), 8.06 (1H, d J 8.5),
$8.00(1 \mathrm{H}, \mathrm{d} J 8.1), 7.79$ (2H, apparent ddd J 8.7, 3.0, 2.2), 7.73 (1H apparent ddd J 8.5,
$6.9,1.5), 7.61$ (1H, ddd 8.1, 6.9, 1.2), 7.11 (2H, apparent ddd J8.7, 3.0, 2.2), 4.13 (2H, t J
$6.5), 2.44(2 \mathrm{H}, \mathrm{t}$ J 7.1), $2.20(6 \mathrm{H}, \mathrm{s}), 1.95(2 \mathrm{H}, \mathrm{m}) ; \delta \mathrm{c}(125 \mathrm{MHz}) 160.5,150.5$, 148.2,
134.3, 132.7, 130.9, 130.1, 129.8, 129.4, 129.2, 129.1, 127.8, 116.2, 67.0, 56.9, 45.8, 28.3
; m/z (ESI+) $307\left(\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 307.1805, found 307.1797.
N, N-Dimethyl-3-(4-(quinoxalin-2-yl)phenoxy)propan-1-amine OX03391

Following general procedure 2, the requisite alcohol ($58 \mathrm{mg}, 0.261 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($45 \mathrm{mg}, 0.287 \mathrm{mmol}$) gave the title compound as a white solid ($68 \mathrm{mg}, 84 \%$). mp $>300^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2475,1506$, 1270, 810; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.26(1 \mathrm{H}, \mathrm{s}), 8.14(2 \mathrm{H}$, apparent ddd J 8.9, 2.9, 2.0), $8.08(2 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{m}), 7.68(1 \mathrm{H}, \mathrm{m}), 7.05(2 \mathrm{H}$, apparent ddd J8.9, 2.9, 2.0), 4.09 (2H, t J 6.3), 2.55 (2H, t J 7.3), $2.32(6 \mathrm{H}, \mathrm{s}), 2.04(2 \mathrm{H}, \mathrm{m})$; $\delta \mathrm{c}(125 \mathrm{MHz}$, CDCl_{3}) 160.7, 151.3, 143.0,
142.2, 141.1, 130.1, 129.3, 129.1, 129.0, 128.9, 128.8, 115.0, 66.1, 56.2, 45.2, 27.1; m/z (ESI $\left.{ }^{+}\right) 308\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 308.1757, found 308.1756.

3-(4-(Benzofuran-2-yl)phenoxy)-N,N-dimethylpropan-1-amine OX03392

Following general procedure 2, the requisite alcohol ($34 \mathrm{mg}, 0.163 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($28 \mathrm{mg}, 0.179 \mathrm{mmol}$) gave the title compound as a cream solid ($29 \mathrm{mg}, 60 \%$). mp 203-206 ${ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 2473,1505$, 1250, 797; ठн (400 MHz) 7.86 (2H, apparent ddd J8.9, 2.9, 2.1), 7.60 (1H, apparent dd J7.4,
1.3), 7.53 ($1 \mathrm{H}, \mathrm{d} J 8.0$), 7.28 (1 H , apparent ddd $J 7.8,7.4,1.4$), $7.22(1 \mathrm{H}, \mathrm{m}), 7.13$ $(1 \mathrm{H}, \mathrm{s}), 7.05(2 \mathrm{H}$, apparent ddd J8.9, 2.9, 2.1), 4.11 (2H, t J6.4), 2.42 (2H, t J7.0), 2.19 (6H,
s), $1.94(2 \mathrm{H}, \mathrm{m})$; $\delta_{c}(100 \mathrm{MHz}) 160.8,157.0,155.6,130.6,127.3,124.8,123.9$, 123.8, 121.6, 115.8, 111.7, 100.7, 67.0, 56.8, 45.8, 28.3; HRMS (FI) $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$ (M) requires 295.1572, found 295.1586.

3-(4-(Benzo[d]thiazol-2-yl)phenoxy)-N,N-dimethylpropan-1-amine OX03393

Following general procedure 2, the requisite alcohol ($33 \mathrm{mg}, 0.142 \mathrm{mmol}$) and 3dimethylamino-1-propylchloride hydrochloride ($25 \mathrm{mg}, 0.157 \mathrm{mmol}$) gave the title compound as a beige solid ($24 \mathrm{mg}, 54 \%$). mp 206-209 ${ }^{\circ} \mathrm{C}$; Umax (cm^{-1}) 2926, 2760, 1604, 1519, 1255, 1174; $\delta_{\text {н }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.02$ (3H, m), 7.88 ($1 \mathrm{H}, \mathrm{d} \mathrm{J} 7.9$), 7.47 (1 H , apparent dd $J 7.7,7.5$), $7.36(1 \mathrm{H}$, apparent dd $J 7.7,7.5), 6.99(2 \mathrm{H}, \mathrm{d} J$ 8.6), $4.11(2 \mathrm{H}, \mathrm{t} J 6.0), 2.69(2 \mathrm{H}, \mathrm{t} 7.1), 2.43(6 \mathrm{H}, \mathrm{s}), 2.11(2 \mathrm{H}, \mathrm{m})$; $\delta \mathrm{c}(100 \mathrm{MHz}$, CDCl_{3}) 167.8, 161.1,
154.1, 134.8, 129.1, 126.4, 126.2, 124.8, 122.8, 121.5, 114.8, 65.9, 56.1, 44.8, 26.6; HRMS $\left(E S I^{+}\right) \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 313.1369, found 313.1370. (E)-

N, N-Dimethyl-3-(2-styrylphenoxy)propan-1-amine OX03394²

Following general procedure 1, the requisite aldehyde ($124 \mathrm{mg}, 0.596 \mathrm{mmol}$) gave the title compound as a viscous oil ($67 \mathrm{mg}, 40 \%$). The analytical data were in accordance with those reported in the literature. ${ }^{2} U_{\max }\left(\mathrm{cm}^{-1}\right) 3329,2945,1596$, 1453, 1240, 1053; $\delta_{\text {н }}(400 \mathrm{MHz}) 7.65(1 \mathrm{H}$, dd J $7.7,1.6), 7.56(3 \mathrm{H}, \mathrm{m}), 7.36(2 \mathrm{H}$, m), $7.24(3 \mathrm{H}, \mathrm{m}$,), $7.00(1 \mathrm{H}, \mathrm{d} J 8.2), 6.95(1 \mathrm{H}$, apparent dd J 7.6, 7.5), $4.11(2 \mathrm{H}, \mathrm{t}$ J 6.3), $2.53(2 \mathrm{H}, \mathrm{t} J 7.1), 2.23(6 \mathrm{H}, \mathrm{s}), 2.02(2 \mathrm{H}, \mathrm{m})$; $\delta \mathrm{c}(100 \mathrm{MHz})$ 157.5, 139.0, 129.7, 129.7, 129.6, 128.3, 127.4, 127.3, 127.1, 124.5, 121.5, 113.2, 67.3, 57.0, 45.7, 28.2; m/z (ESI+) $282\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI $) \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 282.1852, found 282.1855 .

(E)-4-Styrylphenol OX03395³

Following general procedure 3, 4-iodophenol ($561 \mathrm{mg}, 2.55 \mathrm{mmol}$) and styrene $(0.35 \mathrm{~mL}, 3.06 \mathrm{mmol})$ gave the title compound as a white solid ($122 \mathrm{mg}, 24 \%$). The analytical data were in accordance with those reported in the literature. ${ }^{3} \mathrm{mp} 180-$ $182{ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 3409,1591,1508,1450,1369,1245,960$; $\delta_{H}(400 \mathrm{MHz}) 8.49$ ($1 \mathrm{H}, \mathrm{s}$), 7.54 ($2 \mathrm{H}, \mathrm{d}$ J 8.0),
$7.46(2 \mathrm{H}$, apparent ddd J 8.7, 2.9, 2.1), $7.34(2 \mathrm{H}, \mathrm{m}), 7.20(2 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 16.5), $6.86(2 \mathrm{H}$, apparent ddd J 8.7, 2.9, 2.1); $\delta \mathrm{c}(100 \mathrm{MHz}) 158.3,138.9,130.0$, 129.5, 129.4, 128.8, 127.9, 127.0, 126.5, 116.5; m/z (ESI) 195 ([M-H] $\left.{ }^{-}\right)$.

(E)-3-(4-Styrylphenoxy)propan-1-ol OX3050 ${ }^{4}$

Following general procedure 2, alcohol OX03395 (100 mg, 0.51 mmol) and 3-chloro-1propanol ($0.05 \mathrm{~mL}, 0.56 \mathrm{mmol}$) gave the title compound as a white fluffy solid ($92 \mathrm{mg}, 71 \%$). The analytical data were in accordance with those reported in the literature. ${ }^{4} \mathrm{mp} 166-167{ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 3275,1601,1507,1235,1043 ; \mathrm{\delta H}_{\mathrm{H}}(400$ $\mathrm{MHz}) 7.56$ (2H, d J7.7),
$7.54(2 \mathrm{H}$, apparent ddd J8.7, 2.9, 2.0), $7.35(2 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{d} J$ 16.4),
$6.95(2 \mathrm{H}$, apparent ddd J 8.7, 2.9, 2.0), $4.13(2 \mathrm{H}, \mathrm{t} J 6.3), 3.74(2 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{t}$ J 5.2), 1.97 (2H, m); ठс (100 MHz) 160.0, 138.8, 131.0, 129.6, 129.2, 128.7, 128.0,
127.1, 127.1, 115.6, 65.7, 59.1, 33.4; $m / z\left(\right.$ ESI $\left.^{-}\right) 254$ ([M-H] $)$; HRMS (FI) $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ (M) requires 254.1307, found 254.1317 .

(E)-1-Methoxy-4-styrylbenzene OX03396 ${ }^{5}$

Following general procedure 4, 4-iodoanisole ($557 \mathrm{mg}, 2.38 \mathrm{mmol}$) and styrene ($0.33 \mathrm{~mL}, 2.85 \mathrm{mmol}$) gave the title compound as a white solid ($236 \mathrm{mg}, 47 \%$). The analytical data were in accordance with those reported in the literature. ${ }^{5} \mathrm{mp}$ 129$132{ }^{\circ} \mathrm{C}$; $U_{\max }\left(\mathrm{cm}^{-1}\right) 3003,1600,1508,1244,1177$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.55(4 \mathrm{H}, \mathrm{m}), 7.35$ (2H, m), $7.22(2 \mathrm{H}, \mathrm{m})$,
$7.10(1 \mathrm{H}, \mathrm{d} \mathrm{J} 16.5), 6.94(2 \mathrm{H}$, apparent ddd J 8.8, 3.0, 2.1), $3.81(3 \mathrm{H}, \mathrm{s})$; ठc (100 $\mathrm{MHz}) 160.5,138.8,131.1,129.6,129.1,128.7,128.1,127.2,127.1,115.0,55.7$; HRMS (FI) $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}(\mathrm{M})$ requires 210.1045, found 210.1052.

NMR spectra:

(E)-N,N-Dimethyl-3-(4-styrylphenoxy)propan-1-amine OX03371

(E)-1-((4-Methylpentyl)oxy)-4-styrylbenzene OX03373

(E)-1-(3-Methoxypropoxy)-4-styrylbenzene OX03374

(E)-3-(4-(4-Methoxystyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03375

(E)-3-(4-(3-Methoxystyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03376

(E)-3-(4-(2-Methoxystyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03377

(E)-N,N-Dimethyl-3-(4-(2-(naphthalen-2-yl)vinyl)phenoxy)propan-1-amine OX03378

(E)-3-(4-(4-Fluorostyryl)phenoxy)-N,N-dimethylpropan-1-amine OX3379

(E)-3-(4-(3-Fluorostyryl)phenoxy)-N,N-dimethylpropan-1-amine OX03380

(E)-N,N-Dimethyl-3-(4-(4-nitrostyryl)phenoxy)propan-1-amine OX03381

(E)-N,N-Dimethyl-3-(4-(2-nitrostyryl)phenoxy)propan-1-amine OX3397

N, N-Dimethyl-3-(4-(phenylethynyl)phenoxy)propan-1-amine OX03383

N, N-Dimethyl-3-(4-phenethylphenoxy)propan-1-amine OX03384

I

N, N-Ddimethyl-3-(4-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)phenoxy)propan-1-amine OX03385

I

|

N-(4-(3-(Dimethylamino)propoxy)phenyl)benzamide OX03386

I

I

(E)-3-(2-Fluoro-4-styrylphenoxy)-N,N-dimethylpropan-1-amine OX03387

I

(E)-N,N-Dimethyl-2-(4-styrylphenoxy)ethanamine OX03388

I

I

(E)- N-Methyl-3-(4-styrylphenoxy)propan-1-amine OX03389

I

I

N, N-Dimethyl-3-(4-(quinolin-3-yl)phenoxy)propan-1-amine OX03390

N, N-Dimethyl-3-(4-(quinoxalin-2-yl)phenoxy)propan-1-amine OX03391

3-(4-(Benzofuran-2-yl)phenoxy)-N,N-dimethylpropan-1-amine OX03392

3-(4-(Benzo[d]thiazol-2-yl)phenoxy)-N,N-dimethylpropan-1-amine OX03393

(E)-N,N-Dimethyl-3-(2-styrylphenoxy)propan-1-amine OX03394 ${ }^{55}$

(E)-N,N-Dimethyl-3-(3-styrylphenoxy)propan-1-amine OX03372

I

I

(E)-4-Styrylphenol OX3395 ${ }^{56}$

I

I

References:

1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
2. R. Kikumoto, A. Tobe, H. Fukami, K. Ninomiya and M. Egawa, J. Med. Chem., 1984, 27, 645649.
3. A. Sharma, R. Kumar, N. Sharma, V. Kumar and A. K. Sinha, Adv. Synth. Catal., 2008, 350, 29102920.
4. A. Jahnke, B. Beile and H. Meier, Helv. Chim. Acta, 2011, 94, 2111-2124.
5. R. Bandari, T. Hoeche, A. Prager, K. Dirnberger and M. R. Buchmeiser, Chem. Eur. J., 2010, 16, 4650-4658, S4650/4651-S4650/4612.

80
Chemical Shift (ppm)

