RT Journal Article SR Electronic T1 Induction of Epithelial-Mesenchymal Transition via Activation of Epidermal Growth Factor Receptor Contributes to Sunitinib Resistance in Human Renal Cell Carcinoma Cell Lines JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 152 OP 158 DO 10.1124/jpet.115.226639 VO 355 IS 2 A1 Atsushi Mizumoto A1 Kazuhiro Yamamoto A1 Yuko Nakayama A1 Kohji Takara A1 Tsutomu Nakagawa A1 Takeshi Hirano A1 Midori Hirai YR 2015 UL http://jpet.aspetjournals.org/content/355/2/152.abstract AB Sunitinib is widely used for treating renal cell carcinoma (RCC). However, some patients do not respond to treatment with this drug. We aimed to study the association between sunitinib sensitivity and epithelial-mesenchymal transition (EMT) regulation via epidermal growth factor receptor (EGFR) signaling, which is a mechanism of resistance to anticancer drugs. Three RCC cell lines (786-O, ACHN, and Caki-1) were used, and then we evaluated cell viability, EMT regulatory proteins, and signal transduction with sunitinib treatment. Cell viability of 786-O cells was maintained after treatment with sunitinib. After treatment with sunitinib, EGFR phosphorylation increased in 786-O cells, resulting in an increase in the phosphorylation of extracellular signal-regulated kinase, nuclear translocation of β-catenin, and expression of mesenchymal markers. These results suggest that sunitinib induced EMT via activation of EGFR in 786-O cells, but not in ACHN and Caki-1 cells. Caki-1/SN cells, a resistant cell line generated by continuous exposure to sunitinib, displayed increased phosphorylation of EGFR. Cell viability in the presence of sunitinib was decreased by erlotinib, as the selective inhibitor of EGFR, treatment in 786-O and Caki-1/SN cells. Similarly, erlotinib suppressed sunitinib-induced EGFR activation and upregulated mesenchymal markers. Thus, we postulate that resistance to sunitinib in RCC may be associated with EMT caused by activation of EGFR.