PT - JOURNAL ARTICLE AU - Edna F. R. Pereira AU - Yasco Aracava AU - Louis J. DeTolla, Jr. AU - E. Jeffrey Beecham AU - G. William Basinger, Jr. AU - Edgar J. Wakayama AU - Edson X. Albuquerque TI - Animal Models That Best Reproduce the Clinical Manifestations of Human Intoxication with Organophosphorus Compounds AID - 10.1124/jpet.114.214932 DP - 2014 Aug 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 313--321 VI - 350 IP - 2 4099 - http://jpet.aspetjournals.org/content/350/2/313.short 4100 - http://jpet.aspetjournals.org/content/350/2/313.full SO - J Pharmacol Exp Ther2014 Aug 01; 350 AB - The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases—the enzymes that metabolize and inactivate OP compounds—they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.