PT - JOURNAL ARTICLE AU - Ding, Yindi AU - Frömel, Timo AU - Popp, Rüdiger AU - Falck, John R. AU - Schunck, Wolf-Hagen AU - Fleming, Ingrid TI - The Biological Actions of 11,12-Epoxyeicosatrienoic Acid in Endothelial Cells Are Specific to the <em>R</em>/<em>S</em>-Enantiomer and Require the G<sub>s</sub> Protein AID - 10.1124/jpet.114.214254 DP - 2014 Jul 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 14--21 VI - 350 IP - 1 4099 - http://jpet.aspetjournals.org/content/350/1/14.short 4100 - http://jpet.aspetjournals.org/content/350/1/14.full SO - J Pharmacol Exp Ther2014 Jul 01; 350 AB - Cytochrome P450–derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface Gs-coupled receptor has been postulated. To assess whether the responses of endothelial cells to 11,12-EET are enantiomer specific and linked to a potential G protein–coupled receptor, we assessed 11,12-EET-induced, PKA-dependent translocation of transient receptor potential (TRP) C6 channels, as well as angiogenesis. In primary cultures of human endothelial cells, (±)-11,12-EET led to the rapid (30 seconds) translocation a TRPC6-V5 fusion protein, an effect reproduced by 11(R),12(S)-EET, but not by 11(S),12(R)-EET or (±)-14,15-EET. Similarly, endothelial cell migration and tube formation were stimulated by (±)-11,12-EET and 11(R),12(S)-EET, whereas 11(S),12(R)-EET and 11,12-dihydroxyeicosatrienoic acid were without effect. The effects of (±)-11,12-EET on TRP channel translocation and angiogenesis were sensitive to EET antagonists, and TRP channel trafficking was also prevented by a PKA inhibitor. The small interfering RNA-mediated downregulation of Gs in endothelial cells had no significant effect on responses stimulated by vascular endothelial growth or a PKA activator but abolished responses to (±)-11,12-EET. The downregulation of Gq/11 failed to prevent 11,12-EET–induced TRPC6 channel translocation or the formation of capillary-like structures. Taken together, our results suggest that a Gs-coupled receptor in the endothelial cell membrane responds to 11(R),12(S)-EET and mediates the PKA-dependent translocation and activation of TRPC6 channels, as well as angiogenesis.