PT - JOURNAL ARTICLE AU - Kuen-Feng Chen AU - Hui-Ling Chen AU - Wei-Tien Tai AU - Wen-Chi Feng AU - Chih-Hung Hsu AU - Pei-Jer Chen AU - Ann-Lii Cheng TI - Activation of Phosphatidylinositol 3-Kinase/Akt Signaling Pathway Mediates Acquired Resistance to Sorafenib in Hepatocellular Carcinoma Cells AID - 10.1124/jpet.110.175786 DP - 2011 Apr 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 155--161 VI - 337 IP - 1 4099 - http://jpet.aspetjournals.org/content/337/1/155.short 4100 - http://jpet.aspetjournals.org/content/337/1/155.full SO - J Pharmacol Exp Ther2011 Apr 01; 337 AB - Hepatocellular carcinoma (HCC) is one of the most common potentially lethal human malignancies worldwide. Sorafenib, a tyrosine kinase inhibitor, was recently approved by the United States Food and Drug Administration for HCC. In this study, we established two sorafenib-resistant HCC cell lines from Huh7, a human HCC cell line, by long-term exposure of cells to sorafenib. Sorafenib induced significant apoptosis in Huh7 cells; however, Huh7-R1 and Huh7-R2 showed significant resistance to sorafenib-induced apoptosis at the clinical relevant concentrations (up to 10 μM). Thorough comparisons of the molecular changes between Huh7 and resistant cells showed that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway played a significant role in mediating acquired resistance to sorafenib in Huh7-R1 and Huh7-R2 cells. Phospho-Akt and p85 (a regulatory subunit of PI3K) were up-regulated, whereas tumor suppressor phosphatase and tensin homolog were down-regulated in these resistant cells. In addition, ectopic expression of constitutive Akt in Huh7 demonstrated similar resistance to sorafenib. The knockdown of Akt by RNA interference reversed resistance to sorafenib in Huh7-R1 cells, indicating the importance of Akt in drug sensitivity. Furthermore, the combination of 8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-1,2,4-triazolo[3,4-f][1,6]naphthyridin-3(2H)-one dihydrochloride (MK-2206), a novel allosteric Akt inhibitor, and sorafenib restored the sensitivity of resistant cells to sorafenib-induced apoptosis. In conclusion, activation of PI3K/Akt signaling pathway mediates acquired resistance to sorafenib in HCC, and the combination of sorafenib and MK-2206, an Akt inhibitor, overcomes the resistance at clinical achievable concentrations.