RT Journal Article
SR Electronic
T1 MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a Selective E Prostanoid Receptor 4 Antagonist, Relieves Joint Inflammation and Pain in Rodent Models of Rheumatoid and Osteoarthritis
JF Journal of Pharmacology and Experimental Therapeutics
JO J Pharmacol Exp Ther
FD American Society for Pharmacology and Experimental Therapeutics
SP 425
OP 434
DO 10.1124/jpet.107.134510
VO 325
IS 2
A1 Clark, Patsy
A1 Rowland, Steven E.
A1 Denis, Danielle
A1 Mathieu, Marie-Claude
A1 Stocco, Rino
A1 Poirier, Hugo
A1 Burch, Jason
A1 Han, Yongxin
A1 Audoly, Laurent
A1 Therien, Alex G.
A1 Xu, Daigen
YR 2008
UL http://jpet.aspetjournals.org/content/325/2/425.abstract
AB Previous evidence has implicated E prostanoid receptor 4 (EP4) in mechanical hyperalgesia induced by subplantar inflammation. However, its role in chronic arthritis remains to be further defined because previous attempts have generated two conflicting lines of evidence, with one showing a marked reduction of arthritis induced by a collagen antibody in mice lacking EP4, but not EP1-EP3, and the other showing no impact of EP4 antagonism on arthritis induced by collagen. Here, we assessed the effect of a novel and selective EP4 antagonist MF498 [N-{[4-(5,9-diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide] on inflammation in adjuvant-induced arthritis (AIA), a rat model for rheumatoid arthritis (RA), and joint pain in a guinea pig model of iodoacetate-induced osteoarthritis (OA). In the AIA model, MF498, but not the antagonist for EP1, MF266-1 [1-(5-{3-[2-(benzyloxy)-5-chlorophenyl]-2-thienyl}pyridin-3-yl)-2,2,2-trifluoroethane-1,1-diol] or EP3 MF266-3 [(2E)-N-[(5-bromo-2-methoxyphenyl)sulfonyl]-3-[5-chloro-2-(2-naphthylmethyl)phenyl]acrylamide], inhibited inflammation, with a similar efficacy as a selective cyclooxygenase 2 (COX-2) inhibitor MF-tricyclic. In addition, MF498 was as effective as an nonsteroidal anti-inflammatory drug, diclofenac, or a selective microsomal prostaglandin E synthase-1 inhibitor, MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)isophthalonitrile], in relieving OA-like pain in guinea pigs. When tested in rat models of gastrointestinal toxicity, the EP4 antagonist was well tolerated, causing no mucosal leakage or erosions. Lastly, we evaluated the renal effect of MF498 in a furosemide-induced diuresis model and demonstrated that the compound displayed a similar renal effect as MF-tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone], reducing furosemide-induced natriuresis by ∼50%. These results not only suggest that EP4 is the major EP receptor in both RA and OA but also provide a proof of principle to the concept that antagonism of EP4 may be useful for treatment of arthritis. The American Society for Pharmacology and Experimental Therapeutics