RT Journal Article SR Electronic T1 Inhibition of Lipopolysaccharide-Stimulated Chronic Obstructive Pulmonary Disease Macrophage Inflammatory Gene Expression by Dexamethasone and the p38 Mitogen-Activated Protein Kinase Inhibitor N-cyano-N′-(2-{[8-(2,6-difluorophenyl)-4-(4-fluoro-2-methylphenyl)-7-oxo-7,8-dihydropyrido[2,3-d] pyrimidin-2-yl]amino}ethyl)guanidine (SB706504) JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 458 OP 468 DO 10.1124/jpet.108.142950 VO 328 IS 2 A1 Lauren M. Kent A1 Lucy J. C. Smyth A1 Jonathan Plumb A1 Chris L. Clayton A1 Steve M. Fox A1 David W. Ray A1 Stuart N. Farrow A1 Dave Singh YR 2009 UL http://jpet.aspetjournals.org/content/328/2/458.abstract AB p38 mitogen-activated protein kinase (MAPK) signaling is known to be increased in chronic obstructive pulmonary disease (COPD) macrophages. We have studied the effects of the p38 MAPK inhibitor N-cyano-N′-(2-{[8-(2,6-difluorophenyl)-4-(4-fluoro-2-methylphenyl)-7-oxo-7,8-dihydropyrido[2,3-d]-pyrimidin-2-yl]amino}ethyl)guanidine (SB706504) and dexamethasone on COPD macrophage inflammatory gene expression and protein secretion. We also studied the effects of combined SB706504 and dexamethasone treatment. Lipopolysaccharide (LPS)-stimulated monocyte derived macrophages (MDMs) and alveolar macrophages (AMs) were cultured with dexamethasone and/or SB706504. MDMs were used for gene array and protein studies, whereas tumor necrosis factor (TNF) α protein production was measured from AMs. SB706504 caused transcriptional inhibition of a range of cytokines and chemokines in COPD MDMs. The use of SB706504 combined with dexamethasone caused greater suppression of gene expression (-8.90) compared with SB706504 alone (-2.04) or dexamethasone (-3.39). Twenty-three genes were insensitive to the effects of both drugs, including interleukin (IL)-1β, IL-18, and chemokine (CC motif) ligand (CCL) 5. In addition, the chromosome 4 chemokine cluster members, CXCL1, CXCL2, CXCL3, and CXCL8, were all glucocorticoid-resistant. SB706504 significantly inhibited LPS-stimulated TNFα production from COPD and smoker AMs, with near-maximal suppression caused by combination treatment with dexamethasone. We conclude that SB706504 targets a subset of inflammatory macrophage genes and when used with dexamethasone causes effective suppression of these genes. SB706504 and dexamethasone had no effect on the transcription of a subset of LPS-regulated genes, including IL-1β, IL-18, and CCL5, which are all known to be involved in the pathogenesis of COPD. The American Society for Pharmacology and Experimental Therapeutics