RT Journal Article SR Electronic T1 Neuroprotective Effects of a Novel Poly(ADP-Ribose) Polymerase-1 Inhibitor, 2-{3-[4-(4-Chlorophenyl)-1-piperazinyl] propyl}-4(3H)-quinazolinone (FR255595), in an in Vitro Model of Cell Death and in Mouse 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Model of Parkinson's Disease JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 1067 OP 1078 DO 10.1124/jpet.103.064642 VO 309 IS 3 A1 Akinori Iwashita A1 Syunji Yamazaki A1 Kayoko Mihara A1 Kouji Hattori A1 Hirofumi Yamamoto A1 Junya Ishida A1 Nobuya Matsuoka A1 Seitaro Mutoh YR 2004 UL http://jpet.aspetjournals.org/content/309/3/1067.abstract AB The massive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA-damaging stimuli, such as exposure to reactive oxygen species (ROS), can lead to cell injury via severe, irreversible depletion of the NAD and ATP pool, and PARP-1 inhibitors have been expected to rescue neurons from degeneration in a number of disease models. We have recently identified 2-{3-[4-(4-chlorophenyl)-1-piperazinyl] propyl}-4(3H)-quinazolinone (FR255595) as a novel and potent PARP-1 inhibitor through structure-based drug design and high-throughput screening. This compound potently inhibited PARP activity with an IC50 value of 11 nM and was orally active and highly brain penetrable. Here, we show that prevention of PARP activation by FR255595 protects against both ROS-induced cells injury in vitro and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal dopaminergic damage in an in vivo Parkinson's disease (PD) model. In cell death models in vitro, exposure of hydrogen peroxide induced cell death with PARP overactivation in PC12 cells and SH-SY5Y cells, and pre- and post-treatment with FR255595 (10-9-10-5 M) significantly reduced PARP activation and cell death. In mouse MPTP model, MPTP (20 mg/kg i.p.) intoxication lead to PARP activation and cell damage in the nigrostriatal dopaminergic pathway, which was significantly ameliorated by oral administration of FR255595 (10-32 mg/kg), both in the substantia nigra and in the striatum via marked reduction of PARP activation, even with delayed treatment. These findings clearly indicate that the novel PARP-1 inhibitor FR255595 exerts neuroprotective effect through its potent PARP-1 inhibitory actions in PD model, suggesting that the drug could be an attractive candidate for several neurodegenerative disorders, including PD. The American Society for Pharmacology and Experimental Therapeutics