RT Journal Article SR Electronic T1 Wortmannin, a Potent Antineutrophil Agent, Exerts Cardioprotective Effects in Myocardial Ischemia/Reperfusion JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 37 OP 43 VO 295 IS 1 A1 Lindon H. Young A1 Yasuhiko Ikeda A1 Rosario Scalia A1 Allan M. Lefer YR 2000 UL http://jpet.aspetjournals.org/content/295/1/37.abstract AB Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, suppresses superoxide production from PMNs. Therefore, we hypothesized that wortmannin could attenuate PMN-induced cardiac dysfunction by suppression of superoxide production from PMNs. We examined the effects of wortmannin in isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. Wortmannin at 10, 20, or 40 nM given to hearts during the first 5 min of reperfusion, significantly improved left ventricular developed pressure (P < .01), and the maximal rate of development of left ventricular developed pressure (P < .01) compared with ischemic/reperfused hearts perfused with PMNs in the absence of wortmannin. In addition, wortmannin significantly reduced PMN infiltration into the myocardium by 50 to 75% (P < .001). Superoxide radical release also was significantly reduced inN-formylmethionyl-leucylphenylalanine-stimulated PMNs pretreated with 10 or 40 nM wortmannin by 70 and 95%, respectively (P < .001 versus untreated PMNs). Rat PMN adherence to rat superior mesenteric artery endothelium exposed to 2 U/ml thrombin was significantly attenuated by 10 to 40 nM wortmannin compared with untreated vessels (P < .001). These results provide evidence that wortmannin can significantly attenuate PMN-induced cardiac contractile dysfunction in the ischemic/reperfused rat heart via attenuation of PMN infiltration into the myocardium and suppression of superoxide release by PMNs. The American Society for Pharmacology and Experimental Therapeutics