PT - JOURNAL ARTICLE AU - S M Waters AU - C S Konkoy AU - T P Davis TI - Haloperidol and apomorphine differentially affect neuropeptidase activity. DP - 1996 Apr 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 113--120 VI - 277 IP - 1 4099 - http://jpet.aspetjournals.org/content/277/1/113.short 4100 - http://jpet.aspetjournals.org/content/277/1/113.full SO - J Pharmacol Exp Ther1996 Apr 01; 277 AB - In addition to their well characterized effects at dopamine receptors, neuroleptic drugs have been shown to affect the level and in vitro metabolism of neuropeptides. In the present study, the effect of acute and subchronic administration of the neuroleptic haloperidol and the nonselective, dopamine agonist apomorphine on neuropeptidase activity was determined in regional, rat brain P2 membranes. Subchronic administration of haloperidol decreased the activity of aminopeptidase N in the frontal cortex and caudate-putamen. In contrast, subchronic administration of apomorphine increased aminopeptidase N activity in the frontal cortex and caudate-putamen. Neutral endopeptidase 24.11 also was affected differentially in the caudate-putamen, but both subchronic haloperidol and apomorphine decreased neutral endopeptidase 24.11 activity in the frontal cortex. Metalloendopeptidase 24.15 activity was decreased in the caudate-putamen after acute haloperidol and increased in the frontal cortex after acute apomorphine administration; however, no effect was noted after subchronic administration of either drug. Angiotensin converting enzyme was not affected by any treatment. Therefore, neuroleptic-induced alterations in aminopeptidase N, neutral endopeptidase 24.11 and metalloendopeptidase 24.15 activity may account for previously reported alterations in neuropeptide degradation. In view of the interaction between mesocorticolimbic dopamine neurons and neuropeptides, e.g., substance P, neurotensin and enkephalins, neuroleptic-induced alterations in the activities of neuropeptidases, and thus neuropeptide metabolism can, in turn, play a role in modulating midbrain dopaminergic activity.