%0 Journal Article %A B J Ring %A J Catlow %A T J Lindsay %A T Gillespie %A L K Roskos %A B J Cerimele %A S P Swanson %A M A Hamman %A S A Wrighton %T Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. %D 1996 %J Journal of Pharmacology and Experimental Therapeutics %P 658-666 %V 276 %N 2 %X The formation kinetics of 2-hydroxymethyl olanzapine (2-OH olanzapine), 4'-N-oxide olanzapine (N-O olanzapine) and 4'-N-desmethyl olanzapine (NdM olanzapine) were analyzed in vitro. Biphasic kinetics were observed for formation of 2-OH and NdM olanzapine. The high-affinity enzyme responsible for 2-OH olanzapine formation by two human liver samples exhibited an intrinsic clearance (CLint) of 0.2 microliter/min/mg. NdM olanzapine formation by two human liver samples exhibited a CLint of 1.0 microliter/min/mg for the high affinity enzyme. The formation of N-O olanzapine was linear up to 300 microM olanzapine, yielding a CLint of 0.32 to 1.70 microliters/min/mg. The formation of 7-hydroxy olanzapine (7-OH olanzapine) exhibited an apparent Km of 24.2 microM. The rates of 2-OH olanzapine formation correlated with CYP2D6 levels and activity, and it was formed to the greatest extent by cDNA-expressed CYP2D6. N-O olanzapine formation correlated with human liver flavin-containing monooxygenase (FMO3) levels and activity. NdM olanzapine and 7-OH olanzapine formation correlated with CYP1A2 catalytic activities and they were formed to the greatest extent by expressed CYP1A2. These results suggest that CYP1A2 catalyzes NdM olanzapine and 7-OH olanzapine formation, CYP2D6 catalyzes 2-OH olanzapine formation and FMO3 catalyzes N-O olanzapine formation. %U https://jpet.aspetjournals.org/content/jpet/276/2/658.full.pdf