PT - JOURNAL ARTICLE AU - S Zini AU - R Zini AU - Y Ben-Ari TI - Nucleotides modulate the low affinity binding sites for [3H]glibenclamide in the rat brain. DP - 1993 Feb 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 701--708 VI - 264 IP - 2 4099 - http://jpet.aspetjournals.org/content/264/2/701.short 4100 - http://jpet.aspetjournals.org/content/264/2/701.full SO - J Pharmacol Exp Ther1993 Feb 01; 264 AB - Receptors for hypoglycemic sulfonylureas, such as glibenclamide, are commonly linked to the activity of ATP-sensitive K+ channels (K-ATP). High and low affinity binding sites for glibenclamide were described previously in numerous tissues. High affinity binding sites have been thought to be responsible of the modulation of K-ATP, but new evidences suggest that low affinity ones could also regulate these channels. In order to clarify the properties of the two binding sites, with respect to their interaction with K-ATP, we characterized biochemically and pharmacologically [3H]glibenclamide binding in the rat brain cortex. Competitive inhibition plots with [3H]glibenclamide performed on membranes of adult and neonatal rat brain cortex exhibited a biphasic pattern with similar binding parameters, indicating the presence of two similar binding sites in adult as well as in neonatal animals. Membranes of adult rat cortex treated with thiol groups modifying agents, N-ethylmaleimide or 1,4-dithiothreitol, increased the inhibition constant of glibenclamide for the low affinity binding sites (K(i)L) by about 4-fold. The divalent cations Mg++ and Ca++ also increased K(i)L by 3- to 6-fold and enhanced the low affinity binding capacity (BmaxL) by 55 and 103%, respectively, both cations increasing BmaxL by 144%. Among the numerous nucleotides studied, adenine and guanidine triphosphate nucleotides were the most potent to affect the low affinity binding sites. ATP, ADP, GTP and respective nonhydrolysable nucleotides increased K(i)L by 7- to 12-fold and decreased BmaxL by 10 to 30%. The effects of nucleotides were not Mg++ dependent.(ABSTRACT TRUNCATED AT 250 WORDS)