RT Journal Article SR Electronic T1 Binding of the dihydropyridine calcium channel blocker (+)-[3H] isopropyl-4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-5-methoxycarbonyl-2, 6-dimethyl-3-pyridinecarboxylate (PN200-110) to RINm5F membranes and cells: characterization and functional significance. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 652 OP 662 VO 258 IS 2 A1 G C Yaney A1 G A Stafford A1 J D Henstenberg A1 G W Sharp A1 G A Weiland YR 1991 UL http://jpet.aspetjournals.org/content/258/2/652.abstract AB This report provides direct evidence for a dihydropyridine receptor/calcium channel in the insulin-secreting beta-cell line RINm5F. The receptor/channel can modulate the intracellular Ca++ concentration and the resultant insulin secretion by regulating the influx of extracellular Ca++ through dihydropyridine-sensitive voltage-dependent L-type Ca++ channels. Elevated extracellular K+ or the dihydropyridine Ca++ channel agonist, BAY k 8644 [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethyl- phenyl)pyridine-5-carboxylate], stimulated the uptake of 45Ca++, raised [Ca++]i, and increased insulin secretion in a concentration-dependent manner. These actions were inhibited by L-type Ca++ channel blockers including nitrendipine, verapamil and diltiazem. (+)-[3H]PN200-110 bound specifically with high affinity to RINm5F cell membranes (Kd approximately 200 pM). Specific binding was inhibited competitively by dihydropyridines whereas phenylalkylamines inhibited incompletely (+)-[3H]PN200-110 binding, consistent with an allosteric interaction. The benzothiazepine diltiazem had no effect on (+)-[3H]PN200-110 binding in the presence of Ca++, but increased binding allosterically in the absence of Ca++ (in the presence of EGTA). Maximal (+)-[3H]PN200-110 binding required divalent cations, with Mg++, Mn++ and Ba++ essentially as effective as Ca++ in reversing the effects of EGTA, whereas binding was not supported by Cd++ or La . Specific high affinity (+)-[3H]PN200-110 binding was also demonstrated in intact RINm5F cells and shown to be modulated by membrane potential. Depolarization of the cells by raising extracellular K+ from 5 to 80 mM increased the affinity of (+)-[3H]PN200-110 4- to 5-fold (decreased Kd) with no significant effect on the maximum number of binding sites.