%0 Journal Article %A J Sawynok %A A Reid %A D Nance %T Spinal antinociception by adenosine analogs and morphine after intrathecal administration of the neurotoxins capsaicin, 6-hydroxydopamine and 5,7-dihydroxytryptamine. %D 1991 %J Journal of Pharmacology and Experimental Therapeutics %P 370-380 %V 258 %N 1 %X The effects of intrathecal pretreatment with the neurotoxins capsaicin, 6-hydroxydopamine and 5,7-dihydroxytryptamine on spinal antinociception by adenosine analogs (NECA, 5'-N-ethylcarboxamido adenosine and CHA, N6-cyclohexyl adenosine) and morphine were examined using the rat tail flick and hot plate tests. Pretreatment with 50 micrograms capsaicin for 7 to 11 days (which reduced substance P immunoreactivity in the superficial layers of the dorsal spinal cord) produced a slight increase in the action of NECA and CHA, and reduced the action on morphine in the hot plate test but not in the tail flick test. Pretreatment with 50 to 100 micrograms 6-hydroxydopamine for 7 to 14 days (which reduced spinal cord noradrenaline levels by 54-65%) reduced spinal antinociception by NECA and CHA but not that by morphine. Pretreatment with 50 micrograms 5,7-dihydroxytryptamine (which reduced spinal cord serotonin levels by 74-89%) had no effect on any agent. Acute pretreatment with 7.5-30 micrograms phentolamine reduced the spinal antinociceptive action of noradrenaline, NECA and CHA, primarily in the hot plate test. Phentolamine (30 micrograms) also reduced the action of morphine (hot plate greater than tail flick), but did not affect the action of L-baclofen. These results suggest that spinal antinociception by adenosine analogs: 1) occurs primarily at a postsynaptic site of action (capsaicin results), and 2) is dependent on release of endogenous noradrenaline and activation of spinal adrenergic receptors (6-hydroxydopamine and phentolamine results). The reduction in the effect of morphine by capsaicin (removes a source of adenosine release) and phentolamine (antagonizes the action of endogenously released adenosine) can be explained in terms of the adenosine release hypothesis of morphine action within the spinal cord. %U https://jpet.aspetjournals.org/content/jpet/258/1/370.full.pdf