TY - JOUR T1 - BMY 30047: a novel topically active retinoid with low local and systemic toxicity. JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 365 LP - 370 VL - 256 IS - 1 AU - X Nair AU - J Quigley AU - K M Tramposch AU - F I Carroll AU - A H Lewin AU - I Kiss Y1 - 1991/01/01 UR - http://jpet.aspetjournals.org/content/256/1/365.abstract N2 - In the treatment of various dermatological disorders, topically applied retinoids have potential therapeutic use with the advantage of improved localized activity and lower toxicity over systemically administered retinoids. However, most retinoids cause a significant degree of local irritation. In the present study, the ability to produce local activity with low local irritation potential was evaluated with a novel retinoic acid derivative. BMY 30047 (11-cis, 13-cis-12-hydroxymethylretinoic acid delta-lactone) is one of a series of retinoic acid derivatives in which the carboxyl function of the polar end was modified with the aim of achieving reduced local irritation and systemic toxicity while retaining the local therapeutic effect. BMY 30047 was evaluated and compared with all-trans retinoic acid for topical retinoid activity in several preclinical assay systems, including the utricle reduction assay in rhino mice, 12-o-tetradecanoylphorbol 13-acetate ester-stimulated ornithine decarboxylase induction in hairless mice and the UV light-induced photodamaged skin model in hairless mice. BMY 30047 was assessed for retinoid-type side effects by evaluating the skin irritation potential in rabbits after repeated topical application, and hypervitaminosis A-inducing potential in mice after i.p. injection. BMY 30047 demonstrated significant topical retinoid activity in several in vivo models with less skin irritation potential relative to the most used clinical concentrations of all-trans retinoic acid. BMY 30047 also showed very little systemic activity and did not produce any evidence of hypervitaminosis A syndrome at systemic doses 20 times greater than the no-effect dose of all-trans retinoic acid. ER -