RT Journal Article SR Electronic T1 Enhancing effect by nicotinic acetylcholine receptor channel blockers, including beta-eudesmol, on succinylcholine-induced inhibition of twitch tension and intracellular Ca++ in mouse diaphragm muscle. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 24 OP 28 VO 256 IS 1 A1 I Kimura A1 H Tsuneki A1 T Kondoh A1 M Kimura YR 1991 UL http://jpet.aspetjournals.org/content/256/1/24.abstract AB To elucidate the mechanism of neuromuscular block by succinylcholine, nerve-evoked changes in intracellular Ca(++)-aequorin luminescence and twitch tension were measured simultaneously in the presence of several different types of blockers for the nicotinic acetylcholine receptor channel. Mouse diaphragm muscles were pretreated for 30 to 60 min with 3 to 40 microM bupivacaine, chlorpromazine, phencyclidine and beta-eudesmol. The effects of these noncompetitive blockers on the succinylcholine-induced response were also compared with those for pancuronium. These channel blockers potentiated (2- to 10-fold) both the blocking effects on intracellular Ca++ and twitch tension of succinylcholine (13-100 microM), but not the pancuronium (0.3-1.1 microM)-induced block. These channel blockers also suppressed succinylcholine (1.3-5 microM)-induced enhancement of evoked Ca++ transients. On the other hand, the channel blockers inhibited the succinylcholine (2.5-100 microM)-induced increase in basal Ca++ transients. These results suggest that neuromuscular block induced by succinylcholine is mainly due to desensitization of the nicotinic acetylcholine receptor.