RT Journal Article SR Electronic T1 Caffeine potentiates the renin response to furosemide in rats. Evidence for a regulatory role of endogenous adenosine. JF Journal of Pharmacology and Experimental Therapeutics JO J Pharmacol Exp Ther FD American Society for Pharmacology and Experimental Therapeutics SP 183 OP 187 VO 251 IS 1 A1 S Paul A1 E K Jackson A1 D Robertson A1 R A Branch A1 I Biaggioni YR 1989 UL http://jpet.aspetjournals.org/content/251/1/183.abstract AB Adenosine is a potent inhibitor of renin release. It has therefore been suggested that endogenous adenosine may play a role in the regulation of renin release. Sodium-chloride transport at the level of the macula densa has been proposed as the primary source of endogenous adenosine. Evidence to support a modulatory role of adenosine on renin release in vivo is, however, limited. We therefore wanted to determine if: 1) adenosine modulates furosemide-induced renin release and 2) sodium-chloride reabsorption at the macula densa is essential for adenosine actions. To test these hypotheses, three groups of rats were pretreated either with saline or the adenosine receptor antagonists caffeine or 1,3-dipropyl-8-(p-sulfophenyl)xanthine (both at a dose of 30 mg/kg followed by 450 micrograms/kg/min). Rats then received furosemide (50 mg/kg i.v.). In the vehicle group, furosemide increased urinary volume, sodium and potassium excretion and increased plasma renin activity from 6 +/- 1 to 45 +/- 11 ngAl/ml/hr. Caffeine and 1,3-dipropyl-8-(p-sulfophenyl)xanthine potentiated the increase in plasma renin activity produced by furosemide (to 120 +/- 15 and 147 +/- 21 ng Al/ml/hr, respectively), whereas having no significant effects on urinary volume, sodium excretion or blood pressure. These results suggest that furosemide-induced renin release in vivo is restrained by endogenous adenosine. In as much as furosemide blocks sodium-chloride transport in the thick ascending limb of Henle's loop and the macula densa cells, it appears that under the conditions of this study sodium transport across these segments is not essential to initiate adenosine-mediated mechanisms.