%0 Journal Article %A M Asano %A K Aoki %A Y Suzuki %A T Matsuda %T Effects of Bay k 8644 and nifedipine on isolated dog cerebral, coronary and mesenteric arteries. %D 1987 %J Journal of Pharmacology and Experimental Therapeutics %P 646-656 %V 243 %N 2 %X Vasoconstrictor effects of Bay k 8644, a dihydropyridine Ca++ agonist, and vasorelaxant effects of nifedipine were investigated in helical strips of dog cerebral (basilar, posterior cerebral and middle cerebral) and peripheral (coronary and mesenteric) arteries. The addition of Bay k 8644 produced a dose-dependent contraction in the absence of any contractile agent in the basilar artery with a pD2 value of 8.53. Similar sensitivity to Bay k 8644 was observed in the posterior cerebral, middle cerebral or coronary artery. Bay k 8644 was much less effective in producing a contraction in the mesenteric artery. An elevation of the concentration of extracellular K+ eliminated the difference between the responses to Bay k 8644 in the basilar and mesenteric artery. Contractile responses of the basilar artery to Bay k 8644 were antagonized competitively by nifedipine (pA2 = 8.17), but non-competitively by diltiazem. The pA2 values for nifedipine antagonism of Bay k 8644 responses with the elevated K+ were the same between the basilar and mesenteric arteries. Increased sensitivity to exogenously added K+ also was observed in cerebral and coronary arteries when compared with the mesenteric artery. The addition of nifedipine to an unstimulated strip produced a dose-dependent relaxation in cerebral and coronary arteries, but not in the mesenteric artery. When the cerebral and peripheral arteries were contracted with K+ to the same magnitude, nifedipine produced similar relaxations among these arteries. Nifedipine was less efficacious in antagonizing the contractile response to Bay k 8644 compared with the contractile response to K+ in cerebral arteries. These results suggest that 1) the voltage-dependent Ca++ channels in the cerebral and coronary arteries are in different states of activation from those in the mesenteric artery, 2) Bay k 8644 contracts the cerebral and coronary arteries by acting primarily on the same site, presumably dihydropyridine receptors of the voltage-dependent Ca++ channels at which nifedipine acts, 3) the dihydropyridine receptors were the same between the basilar and mesenteric arteries and 4) there may be a difference in the state of the Ca++ channel in the arteries between the stimulation with Bay k 8644 and K+-depolarization. %U https://jpet.aspetjournals.org/content/jpet/243/2/646.full.pdf