%0 Journal Article %A D Rudman %T Effects of choroid plexus peptide IIF on adenylate cyclase and 3',5'-cyclic adenosine monophosphate in adipose tissue. %D 1975 %J Journal of Pharmacology and Experimental Therapeutics %P 532-539 %V 195 %N 3 %X Two hypophyseal lipolytic peptides, adrenocorticotropin (ACTH) and beta-melanocyte-stimulating hormone (beta-MSH), and the extrhypophyseal lipolytic peptide IIF, were compared with regard to their effects on free fatty acid production and 3',5'-cyclic adenosine monophosphate (cAMP) concentration in isolated rabbit and rat adipose tissue, and on adenylate cyclase activity in the tissue homogenates. ACTH at concentrations of 0.01 mug/ml or more increased lipolysis and cAMP levels in both tissues. beta-MSH at concentrations of 0.001 mug/ml or more increased lipolysis and cAMP in the rabbit tissue, but a concentration of 10 mug/ml did not stimulate lipolysis and did not alter nucleotide concentration in the rat tissue. Peptide IIF at 0.01 mug/ml or more stimulated lipolysis in rabbit adipose tissue and caused an accumulation of cAMP. A concentration of 100 mug/ml failed to stimulate free fatty acid production in the rat tissue and the cAMP level was also unaffected. In a medium containing 7.6 mEq/l of Mg++ and no Ca++, ACTH at 0.1 mug/ml or more stimulated adenylate cyclase activity in both rabbit and rat adipose homogenates by 6- to 12-fold. This effect was inhibited when Mg++ was replaced by Ca++, Na+ or K+. beta-MSH stimulated adenylate cyclase in rabbit, but not in rat, adipose homogenate in Mg++-containing incubation midium; again, the effect on rabbit adenylate cyclase was suppressed when Mg++ was replaced by Ca++, Na+ or K+. Peptide IIF failed to influence adenylate cyclase in the rabbit tissue homogenate in the Mg++-containing, Ca++-free medium; but when the medium contained 7.6 mEq/l of Ca++ in place of Mg++, 0.1 mug/ml or more of IIF caused a 4- to 15-fold increase in cyclase activity. IIF did not affect cyclase in the rat tissue homogenate in the presence or absence of Ca++. The data are consistent with the conclusion that extrahypophyseal lipolytic peptide IIF, as well as hypophyseal peptides ACTH and beta-MSH, accelerates lipolysis in susceptible adipocytes by stimulating adenylate cyclase to produce cAMP. The effect of IIF on cyclase requires the presence of exogenous Ca++; that of ACTH and beta-MSH requires exogenous Mg++. %U https://jpet.aspetjournals.org/content/jpet/195/3/532.full.pdf