%0 Journal Article %A Takashi Ishikawa %A Hiroe Hara %A Ayumi Kawano %A Kimio Tohyama %A Yuichi Kajita %A Yuhei Miyanohana %A Tatsuki Koike %A Haruhide Kimura %T TAK-994, a novel orally available brain-penetrant orexin 2 receptor-selective agonist, suppresses fragmentation of wakefulness and cataplexy-like episodes in mouse models of narcolepsy %D 2023 %R 10.1124/jpet.122.001449 %J Journal of Pharmacology and Experimental Therapeutics %P JPET-AR-2022-001449 %X Loss of orexin neurons is associated with narcolepsy type 1 (NT1), which is characterized by multiple symptoms including excessive daytime sleepiness and cataplexy. Orexin 2 receptor (OX2R) knockout (KO) mice, but not orexin 1 receptor (OX1R) KO mice, show narcolepsy-like phenotypes, thus OX2R agonists are potentially promising for treating NT1. In fact, in early proof-of-concept studies, intravenous infusion of danavorexton, an OX2R-selective agonist, significantly increased wakefulness in individuals with NT1. However, danavorexton has limited oral availability. Here, we report pharmacological characteristics of a novel OX2R agonist, TAK-994 [N-{(2S,3S)-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3',5'-trifluorobiphenyl-3-yl)methyl]pyrrolidin-3-yl}methanesulfonamide sesquihydrate]. TAK-994 activated recombinant human OX2R (EC50 value of 19 nM) with >700-fold selectivity against OX1R, and activated OX2R-downstream signaling similar to those by orexin peptides in vitro. Oral administration of TAK-994 promoted wakefulness in normal mice, but not in OX2R KO mice. TAK-994 also ameliorated narcolepsy-like symptoms in two mouse models of narcolepsy: orexin/ataxin-3 mice and orexin-tTA;TetO diphtheria toxin A mice. The wake-promoting effects of TAK-994 in orexin/ataxin-3 mice were maintained after chronic dosing for 14 days. These data suggest that overall in vitro and in vivo properties, except oral availability, are very similar between TAK-994 and danavorexton. Preclinical characteristics of TAK-994 shown here, together with upcoming clinical study results, can improve our understanding for orally available OX2R agonists as new therapeutic drugs for NT1 and other hypersomnia disorders. Significance Statement Narcolepsy type 1 (NT1) is caused by a loss of orexin neurons, and thus an orexin 2 receptor (OX2R) agonist is considered to address the underlying pathophysiology of NT1. Oral administration of TAK-994, a novel OX2R agonist, promoted wakefulness in normal mice, but not in OX2R knockout mice, and ameliorated fragmentation of wakefulness and cataplexy-like episodes in mouse models of narcolepsy. These findings indicate that TAK-994 is an orally available brain-penetrant OX2R-selective agonist with potential to improve narcolepsy-like symptoms. %U https://jpet.aspetjournals.org/content/jpet/early/2023/03/31/jpet.122.001449.full.pdf