TY - JOUR T1 - DPP4 Inhibition, NPY<sub>1-36</sub>, PYY<sub>1-36</sub>, SDF-1<em>α</em>, and a Hypertensive Genetic Background Conspire to Augment Cell Proliferation and Collagen Production: Effects That Are Abolished by Low Concentrations of 2-Methoxyestradiol JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 135 LP - 148 DO - 10.1124/jpet.119.263467 VL - 373 IS - 1 AU - Edwin K. Jackson AU - Delbert G. Gillespie AU - Stevan P. Tofovic Y1 - 2020/04/01 UR - http://jpet.aspetjournals.org/content/373/1/135.abstract N2 - By reducing their metabolism, dipeptidyl peptidase 4 inhibition (DPP4I) enhances the effects of numerous peptides including neuropeptide Y1–36 (NPY1–36), peptide YY1–36 (PYY1–36), and SDF-1α. Studies show that separately NPY1–36, PYY1–36 and SDF-1α stimulate proliferation of, and collagen production by, cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs), particularly in cells isolated from genetically hypertensive rats. Whether certain combinations of these factors, in the absence or presence of DPP4I, are more profibrotic than others is unknown. Here we contrasted 24 different combinations of conditions (DPP4I, hypertensive genotype and physiologic levels [3 nM] of NPY1–36, PYY1–36, or SDF-1α) on proliferation of, and [3H]-proline incorporation by, CFs, PGVSMCs, and GMCs. In all three cell types, the various treatment conditions differentially increased proliferation and [3H]-proline incorporation, with a hypertensive genotype + DPP4I + NPY1–36 + SDF-1α being the most efficacious combination. Although the effects of this four-way combination were similar in male versus female CFs, physiologic (1 nM) concentrations of 2-methoxyestradiol (2ME; nonestrogenic metabolite of 17β-estradiol), abolished the effects of this combination in both male and female CFs. In conclusion, this study demonstrates that CFs, PGVSMCs, and GMCs are differentially activated by various combinations of NPY1–36, PYY1–36, SDF-1α, a hypertensive genetic background and DPP4I. We hypothesize that as these progrowth conditions accumulate, a tipping point would be reached that manifests in the long term as organ fibrosis and that 2ME would obviate any profibrotic effects of DPP4I, even under the most profibrotic conditions (i.e., hypertensive genotype with high NPY1–36 + SDF-1α levels and low 2ME levels).SIGNIFICANCE STATEMENT This work elucidates combinations of factors that could contribute to long-term profibrotic effects of dipeptidyl peptidase 4 inhibitors and suggests a novel drug combination that could prevent any potential profibrotic effects of dipeptidyl peptidase 4 inhibitors while augmenting the protective effects of this class of antidiabetic agents. ER -