%0 Journal Article %A Laura Saludas %A Elisa Garbayo %A Manuel Mazo %A beatriz pelacho %A Gloria Abizanda %A Olalla Iglesias Garcia %A Angel Raya %A Felipe Prosper %A Maria J Blanco-prieto %T Long-term engraftment of human cardiomyocytes combined with biodegradable microparticles induces heart repair %D 2019 %R 10.1124/jpet.118.256065 %J Journal of Pharmacology and Experimental Therapeutics %P jpet.118.256065 %X Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) as they offer several advantages, such as potential to remuscularize infarcted tissue, integration in the host myocardium and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance the long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSC by small-molecule manipulation of the Wnt-pathway, and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly-D-lysine. The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, two months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications. %U https://jpet.aspetjournals.org/content/jpet/early/2019/02/06/jpet.118.256065.full.pdf