TY - JOUR T1 - Network-Based Analysis of Bortezomib Pharmacodynamic Heterogeneity in Multiple Myeloma Cells JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 734 LP - 751 DO - 10.1124/jpet.118.247924 VL - 365 IS - 3 AU - Vidya Ramakrishnan AU - Donald E. Mager Y1 - 2018/06/01 UR - http://jpet.aspetjournals.org/content/365/3/734.abstract N2 - The objective of this study is to evaluate the heterogeneity in pharmacodynamic response in four in vitro multiple myeloma cell lines to treatment with bortezomib, and to assess whether such differences are associated with drug-induced intracellular signaling protein dynamics identified via a logic-based network modeling approach. The in vitro pharmacodynamic-efficacy of bortezomib was evaluated through concentration-effect and cell proliferation dynamical studies in U266, RPMI8226, MM.1S, and NCI-H929 myeloma cell lines. A Boolean logic–based network model incorporating intracellular protein signaling pathways relevant to myeloma cell growth, proliferation, and apoptosis was developed based on information available in the literature and used to identify key proteins regulating bortezomib pharmacodynamics. The time-course of network-identified proteins was measured using the MAGPIX protein assay system. Traditional pharmacodynamic modeling endpoints revealed variable responses of the cell lines to bortezomib treatment, classifying cell lines as more sensitive (MM.1S and NCI-H929) and less sensitive (U266 and RPMI8226). Network centrality and model reduction identified key proteins (e.g., phosphorylated nuclear factor-κB, phosphorylated protein kinase B, phosphorylated mechanistic target of rapamycin, Bcl-2, phosphorylated c-Jun N-terminal kinase, phosphorylated p53, p21, phosphorylated Bcl-2–associated death promoter, caspase 8, and caspase 9) that govern bortezomib pharmacodynamics. The corresponding relative expression (normalized to 0-hour untreated-control cells) of proteins demonstrated a greater magnitude and earlier onset of stimulation/inhibition in cells more sensitive (MM.1S and NCI-H929) to bortezomib-induced cell death at 20 nM, relative to the less sensitive cells (U266 and RPMI8226). Overall, differences in intracellular signaling appear to be associated with bortezomib pharmacodynamic heterogeneity, and key proteins may be potential biomarkers to evaluate bortezomib responses. ER -