TY - JOUR T1 - Activation of Focal Adhesion Kinase and Src Mediates Acquired Sorafenib Resistance in A549 Human Lung Adenocarcinoma Xenografts JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 428 LP - 443 DO - 10.1124/jpet.117.240507 VL - 363 IS - 3 AU - Qingyu Zhou AU - Xiaofang Guo AU - Riya Choksi Y1 - 2017/12/01 UR - http://jpet.aspetjournals.org/content/363/3/428.abstract N2 - Despite encouraging clinical results with sorafenib monotherapy in patients with KRAS-mutant non–small-cell lung cancer (NSCLC), the overall survival benefit of this drug is limited by the inevitable development of acquired resistance. The exact mechanism underlying acquired sorafenib resistance in KRAS-mutant NSCLC is unclear. In this study, the mechanism of acquired sorafenib resistance was explored using a biologically relevant xenograft model, which was established by using the A549 human lung adenocarcinoma cell line and an in vivo–derived, sorafenib-resistant A549 subline (A549/SRFres). Results from the initial study demonstrated that sorafenib treatment significantly decreased E-cadherin (P < 0.05) levels but significantly increased matrix metallopeptidase 9 (MMP9) levels (P < 0.01) in A549/SRFres tumors, whereas expression levels of phospho-protein kinase B (AKT), phospho-focal adhesion kinase (FAK), and phospho-Src were elevated in sorafenib-treated A549 and A549/SRFres tumors. We next examined whether concomitant dasatinib treatment could overcome acquired sorafenib resistance by blocking the FAK/Src escape route that mediates resistance. Despite the observed in vitro synergy between sorafenib and dasatinib, the in vivo antitumor effect of half-dose sorafenib-dasatinib combination therapy was inferior to that of the full-dose sorafenib treatment. Although the sorafenib-dasatinib combination effectively inhibited Src and AKT phosphorylation, it did not block the Y576/577-FAK phosphorylation, nor did it decrease vimentin protein expression; unexpectedly, it increased Y397-FAK phosphorylation and MMP9 protein expression in tumors. These results suggest that acquired sorafenib resistance in KRAS-mutant A549 xenografts involves the compensatory activation of FAK and Src, and Src inhibition alone is insufficient to diminish sorafenib-promoted epithelial-mesenchymal transition process and invasive potentials in tumors. ER -