TY - JOUR T1 - Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways JF - Journal of Pharmacology and Experimental Therapeutics JO - J Pharmacol Exp Ther SP - 151 LP - 161 DO - 10.1124/jpet.116.238485 VL - 361 IS - 1 AU - Izumi Kaji AU - Yasutada Akiba AU - Ikuo Kato AU - Koji Maruta AU - Atsukazu Kuwahara AU - Jonathan D. Kaunitz Y1 - 2017/04/01 UR - http://jpet.aspetjournals.org/content/361/1/151.abstract N2 - Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3− secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3− and Cl− secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum. ER -